VIDYASAGAR COLLEGE OF ARTS AND SCIENCE,
UDUMALPET

DEPARTMENT OF DATA SCIENCE

I1 B.Sc [DATA SCIENCE]

R Programming

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

UNIT 1 Introducing to R — R Data Structures — Help Functions in R — Vectors — Scalars —
Declarations — Recycling — Common Vector Operations — Using all and any — Vectorized
operations — Filtering — Victoriesed if-then else — Vector Element names

Introducing to R:

The R Language stands out as a powerful tool in the modern era of statistical computing and data
analysis. Widely embraced by statisticians, data scientists, and researchers, the R Language offers an
extensive suite of packages and libraries tailored for data manipulation, statistical modeling, and
visualization. In this article, we explore the features, benefits, and applications of the R Programming
Language, shedding light on why it has become an indispensable asset for data-driven professionals
across various industries.

R programming language is an implementation of the S programming language. It also combines with
lexical scoping semantics inspired by Scheme. Moreover, the project was conceived in 1992, with an
initial version released in 1995 and a stable beta version in 2000.

Free
Installation
Vast Hottest
Community Trend
Why
R?
Platform lr?tegrate
With Other
Independent
Languages
Latest
Cutting Edge
Technology

What is R Programming Language?

R programming is a leading tool for machine learning, statistics, and data analysis, allowing for the
easy creation of objects, functions, and packages. Designed by Ross lhaka and Robert Gentleman at
the University of Auckland and developed by the R Development Core Team, R Language is
platform-independent and open-source, making it accessible for use across all

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

operating systems without licensing costs. Beyond its capabilities as a statistical package, R integrates
with other languages like C and C++, facilitating interaction with various data sources and statistical
tools. With a growing community of users and high demand in the Data Science job market, R is one
of the most sought-after programming languages today. Originating as an implementation of the S
programming language with influences from Scheme, R has evolved since its conception in 1992,
with its first stable beta version released in 2000.

Why Use R Language?

The R Language is a powerful tool widely used for data analysis, statistical computing, and machine
learning. Here are several reasons why professionals across various fields prefer R:

[y

. Comprehensive Statistical Analysis:
R language is specifically designed for statistical analysis and provides a vast array of statistical
techniques and tests, making it ideal for data-driven research.

2. Extensive Packages and Libraries:

e The R Language boasts a rich ecosystem of packages and libraries that extend its capabilities,
allowing users to perform advanced data manipulation, visualization, and machine learning tasks
with ease.

3. Strong Data Visualization Capabilities:

R language excels in data visualization, offering powerful tools like ggplot2 and plotly, which

enable the creation of detailed and aesthetically pleasing graphs and plots.

4. Open Source and Free:

e As an open-source language, R is free to use, which makes it accessible to everyone, from
individual researchers to large organizations, without the need for costly licenses.

. Platform Independence:
The R Language is platform-independent, meaning it can run on various operating systems,
including Windows, macQOS, and Linux, providing flexibility in development environments.

. Integration with Other Languages:
R can easily integrate with other programming languages such as C, C++, Python, and Java,
allowing for seamless interaction with different data sources and statistical packages.

. Growing Community and Support:
R language has a large and active community of users and developers who contribute to its
continuous improvement and provide extensive support through forums, mailing lists, and online
resources.

. High Demand in Data Science:
R is one of the most requested programming languages in the Data Science job market, making
it a valuable skill for professionals looking to advance their careers in this field.

Features of R Programming Language

The R Language is renowned for its extensive features that make it a powerful tool for data analysis,

statistical computing, and visualization. Here are some of the key features of R:

1. Comprehensive Statistical Analysis:

e R langauge provides a wide array of statistical techniques, including linear and nonlinear
modeling, classical statistical tests, time-series analysis, classification, and clustering.

. Advanced Data Visualization:
With packages like ggplot2, plotly, and lattice, R excels at creating complex and aesthetically
pleasing data visualizations, including plots, graphs, and charts.

. Extensive Packages and Libraries:
The Comprehensive R Archive Network (CRAN) hosts thousands of packages that extend R’s
capabilities in areas such as machine learning, data manipulation, bioinformatics, and more.

4. Open Source and Free:

e R is free to download and use, making it accessible to everyone. Its open-source nature

encourages community contributions and continuous improvement.

(&3]

»

~

oo

N

w

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

5. Platform Independence:

e R is platform-independent, running on various operating systems, including Windows, macOS,
and Linux, which ensures flexibility and ease of use across different environments.

6. Integration with Other Languages:

e R language can integrate with other programming languages such as C, C++, Python, Java, and
SQL, allowing for seamless interaction with various data sources and computational processes.

7. Powerful Data Handling and Storage:

o R efficiently handles and stores data, supporting various data types and structures, including
vectors, matrices, data frames, and lists.

8. Robust Community and Support:

e R has a vibrant and active community that provides extensive support through forums, mailing
lists, and online resources, contributing to its rich ecosystem of packages and documentation.

9. Interactive Development Environment (IDE):

RStudio, the most popular IDE for R, offers a user-friendly interface with features like syntax
highlighting, code completion, and integrated tools for plotting, history, and debugging.

10. Reproducible Research:

R supports reproducible research practices with tools like R Markdown and Kbnitr, enabling users to
create dynamic reports, presentations, and documents that combine code, text, and visualizations.

Advantages of R language

e R is the most comprehensive statistical analysis package. As new technology and concepts often

appear first in R.

As R programming language is an open source. Thus, you can run R anywhere and at any time.

R programming language is suitable for GNU/Linux and Windows operating systems.

R programming is cross-platform and runs on any operating system.

In R, everyone is welcome to provide new packages, bug fixes, and code enhancements.

Disadvantages of R language

e Inthe R programming language, the standard of some packages is less than perfect.

e Although, R commands give little pressure on memory management. So R programming
language may consume all available memory.

e In R basically, nobody to complain if something doesn’t work.

e R programming language is much slower than other programming languages such as Python and
MATLAB.

Applications of R language

e We use R for Data Science. It gives us a broad variety of libraries related to statistics. It also
provides the environment for statistical computing and design.

e Riisused by many quantitative analysts as its programming tool. Thus, it helps in data importing
and cleaning.

¢ Risthe most prevalent language. So many data analysts and research programmers use it. Hence,
it is used as a fundamental tool for finance.

e Tech giants like Google, Facebook, Bing, Twitter, Accenture, Wipro, and many more using R
nowadays.

Data Structures in R Programming

A data structure is a particular way of organizing data in a computer so that it can be used effectively.
The idea is to reduce the space and time complexities of different tasks. Data structures in R
programming are tools for holding multiple values.

R’s base data structures are often organized by their dimensionality (1D, 2D, or nD) and whether
they’re homogeneous (all elements must be of the identical type) or heterogeneous (the elements are
often of various types). This gives rise to the six data types which are most frequently utilized in data
analysis.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

The most essential data structures used in R include:

Vectors

Lists

Dataframes

Matrices

Arrays

Factors

e Tibbles

Vectors

A vector is an ordered collection of basic data types of a given length. The only key thing here is all
the elements of a vector must be of the identical data type e.g homogeneous data structures. Vectors
are one-dimensional data structures.

Example:
R
R program to illustrate Vector

Vectors(ordered collection of same data type)
X=c¢(1,3,5,7,8)

Printing those elements in console
print(X)

Output:

[1]13578

Lists

A list is a generic object consisting of an ordered collection of objects. Lists are heterogeneous data
structures. These are also one-dimensional data structures. A list can be a list of vectors, list of
matrices, a list of characters and a list of functions and so on.

Example:

R

R program to illustrate a List

The first attributes is a numeric vector
containing the employee IDs which is
created using the 'c' command here
empld =c(1, 2, 3, 4)

The second attribute is the employee name

which is created using this line of code here

which is the character vector

empName = c("Debi", "Sandeep”, "Subham", "Shiba")

The third attribute is the number of employees
which is a single numeric variable.
numberOfEmp = 4

We can combine all these three different
data types into a list

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

https://www.geeksforgeeks.org/data-structures-in-r-programming/#vectors
https://www.geeksforgeeks.org/data-structures-in-r-programming/#lists
https://www.geeksforgeeks.org/data-structures-in-r-programming/#dataframes
https://www.geeksforgeeks.org/data-structures-in-r-programming/#matrices
https://www.geeksforgeeks.org/data-structures-in-r-programming/#arrays
https://www.geeksforgeeks.org/data-structures-in-r-programming/#factors
https://www.geeksforgeeks.org/data-structures-in-r-programming/#tibbles

containing the details of employees
which can be done using a list command
empList = list(empld, empName, numberOfEmp)

print(empList)
Output:

[[1]]
[1] 1 2 3 4

[[21]
[1] "Debi" "Sandeep" "Subham" "Shiba"

[[31]

[1]4

Dataframes

Dataframes are generic data objects of R which are used to store the tabular data. Dataframes are the
foremost popular data objects in R programming because we are comfortable in seeing the data within
the tabular form. They are two-dimensional, heterogeneous data structures. These are lists of vectors
of equal lengths.

Data frames have the following constraints placed upon them:

o A data-frame must have column names and every row should have a unigue name.

e Each column must have the identical number of items.

e Each itemin asingle column must be of the same data type.

o Different columns may have different data types.

To create a data frame we use the data.frame() function.

Example:

R

R program to illustrate dataframe

A vector which is a character vector

Name = c("Amiya", "Raj", "Asish")

A vector which is a character vector
Language = ¢("R", "Python", "Java")

A vector which is a numeric vector
Age = c(22, 25, 45)

To create dataframe use data.frame command
and then pass each of the vectors

we have created as arguments

to the function data.frame()

df = data.frame(Name, Language, Age)

print(df)
Output:
Name Language Age

1 Amiya R 22

2 Raj Python 25

3 Asish Java 45

6

Ms.M.BALAMONICA M.Sc

ASSISTANT PROFESSOR

Matrices

A matrix is a rectangular arrangement of numbers in rows and columns. In a matrix, as we know rows
are the ones that run horizontally and columns are the ones that run vertically. Matrices are two-
dimensional, homogeneous data structures.
Now, let’s see how to create a matrix in R. To create a matrix in R you need to use the function called
matrix. The arguments to this matrix() are the set of elements in the vector. You have to pass how
many numbers of rows and how many numbers of columns you want to have in your matrix and this
is the important point you have to remember that by default, matrices are in column-wise order.
Example:

R

R program to illustrate a matrix

A = matrix(
Taking sequence of elements
c(1,2,3,4,56,7,8,9),

No of rows and columns
nrow = 3, ncol = 3,

By default matrices are

in column-wise order

So this parameter decides
how to arrange the matrix
byrow = TRUE

)

print(A)

Output:

(1] [.2] [.3]
[1,] 1 3
[2.] 4 5 6
[3] 7 8 9
Arrays

N

Arrays are the R data objects which store the data in more than two dimensions. Arrays are n-
dimensional data structures. For example, if we create an array of dimensions (2, 3, 3) then it creates
3 rectangular matrices each with 2 rows and 3 columns. They are homogeneous data structures.

Now, let’s see how to create arrays in R. To create an array in R you need to use the function called
array(). The arguments to this array() are the set of elements in vectors and you have to pass a vector
containing the dimensions of the array.

Example:

Python3

R program to illustrate an array

A = array(

Taking sequence of elements

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

c(1,2,3,4,5,6,7,8),

Creating two rectangular matrices
each with two rows and two columns
dim=c(2, 2, 2)

)

print(A)
Output:

1 3

102
[1] 1
[2.] 2

B~ w

1 2

[1][,2]
[1] 5 7
[2] 6 8

Factors

Factors are the data objects which are used to categorize the data and store it as levels. They are useful
for storing categorical data. They can store both strings and integers. They are useful to categorize
unique values in columns like “TRUE” or “FALSE”, or “MALE” or “FEMALE”, etc.. They are useful
in data analysis for statistical modeling.

Now, let’s see how to create factors in R. To create a factor in R you need to use the function called
factor(). The argument to this factor() is the vector.

Example:

R

R program to illustrate factors

Creating factor using factor()
fac = factor(c("Male", "Female", "Male",
"Male", "Female", "Male", "Female"))

print(fac)

Output:

[1] Male Female Male Male Female Male Female
Levels: Female Male

Tibbles

Tibbles are an enhanced version of data frames in R, part of the tidyverse. They offer improved
printing, stricter column types, consistent subsetting behavior, and allow variables to be referred to
as objects. Tibbles provide a modern, user-friendly approach to tabular data in R.

Now, let’s see how we can create a tibble in R. To create tibbles in R we can use the tibble function
from the tibble package, which is part of the tidyverse.

Example:

R

Load the tibble package

library(tibble)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

https://www.geeksforgeeks.org/tibbles-dataframe/

Create a tibble with three columns: name, age, and city
my_data <- tibble(
name = c¢(""Sandeep", "Amit", "Aman"),
age = ¢(25, 30, 35),
city = c("Pune", "Jaipur", "Delhi")
)
Print the tibble
print(my_data)
Output:
Name age city
<chr><dbl><chr>
1Sandeep 25 Pune
2Amit 30 Jaipur
3Aman 35 Delhi

Getting help on a specific function

To read meore about a given function, for example mean, the R function help() can be usad as follow:

help(mean)

Or use this:

fmean

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

The output look like this:

Files Plots Packages Help Viewer - (=
P D> RS & >

R: Arithmetic Mean ~

mean {base) R Documentation

Arithmetic Mean

Description

Generic function for the (timmed) arithmetic mean.
Usage

mean(xX, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments
x An R object. Currently there are methods for numeric/logical vectors and date, date-
time and time interval objects. Complex vectors are allowed for trim = 0, only.

trim the fraction (O to 0.5) of observations to be timmed from each end of x before the
mean is computed. Values of trim outside that range are taken as the nearest
endpoint,

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

«++ lurther arguments passed to or from other methods.

Value

If txrim is zero (the default), the arithmetic mean of the values in x is computed, as a
numeric or complex vector of length one. If x is not logical (coerced to numeric), numeric
(including integer) or complex, NA_real_ is retumed, with a waming.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim
observations deleted from each end before the mean is computed.

If you want to see some examples of how to use the function, type this: example(function_name).

example (mean)

Mote that, typical R help files contain the following sections:

« Title

» Description: a short description of what the function does.

s Usage: the syntax of the function.

+ Arguments: the description of the arguments taken by the function.
* Value: the value returned by the function

» Examples: provide examples on how to use the function

General help

If you want to read the general documentation about R, use the funcion help.start():

help.start()

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

10

The output is a web page, on most R installations, which can be browsed by clicking the hyperlinks.

Files Plots Packages Help Viewer

.-‘—.//l\.

The R Language ~

Statistical Data Analysis

Manuals
An Introduction to R The R Language Definition
Writing R Extensions R Installation and Administration
A Data Import/Export A Internals
Reference
Packages Search Engine & Keywords
Miscellaneous Material
About R Authors Resources
License Frequently Asked Questions Thanks
NEWS User Manyals Technical papers

Others

= apropos(): returns a list of object, containing the pawern you searched, by partial matching, This is useful when you don't
remember exactly the name of the function:

Returns the list of object containing "med™
apropos ("med")

[1] "._C_ mamedList® "elNamed" "elNamed<-" "median™

[6] "medpolish™ "runmed"

"median.default”

» healp.search() (alternatively ??): Search for documentation matching a given character in different ways. It returns a list
of function containing your searched term with a short description of the function.

help.search{"mean"
Or use this

FImean

Vectors

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

11

R Vectors are the same as the arrays in R language which are used to hold multiple data values of
the same type. One major key point is that in R Programming Language the indexing of the vector
will start from “1” and not from “0°. We can create numeric vectors and character vectors as well.

g R
Vectors in R
Index—> 1 2 3 4 5 6 7 8 9 10
Values——>{ 10 | 20 | 30 |40 | 50 | 60 | 70 | 80 | 90 |100
. o

Creating a vector

R — Vector

A vector is a basic data structure that represents a one-dimensional array. to create a array we use
the “c” function which the most common method use in R Programming Language.

R

R program to create Vectors

we can use the ¢ function

to combine the values as a vector.

By default the type will be double

X<- (61, 4, 21, 67, 89, 2)

cat('using ¢ function’, X, \n")

seq() function for creating

a sequence of continuous values.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

12

https://www.geeksforgeeks.org/r-array/
https://www.geeksforgeeks.org/r-programming-language-introduction/

length.out defines the length of vector.
Y<-seq(l, 10, length.out = 5)

cat('using seq() function’, Y, "\n")

use':' to create a vector

of continuous values.

7<-2:7

cat('using colon’, Z)

Output:

using c function 61 4 21 67 89 2

using seq() function 1 3.255.57.75 10

using colon234567

Types of R vectors

Vectors are of different types which are used in R. Following are some of the types of vectors:
Numeric vectors

Numeric vectors are those which contain numeric values such as integer, float, etc.

e R

R program to create numeric Vectors

creation of vectors using c() function.

vl<-c¢(4,5,6,7)

display type of vector

typeof(vl)

by using 'L' we can specify that we want integer values.
v2<- c(1L, 4L, 2L, 5L)

display type of vector

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

13

typeof(v2)

Output:
[1] "double™
[1] "integer"

Character vectors
Character vectors in R contain alphanumeric values and special characters.

e R

R program to create Character Vectors

by default numeric values

are converted into characters

vl<- c('geeks', '2', 'hello’, 57)

Displaying type of vector

typeof(vl)

Output:

[1] "character"

Logical vectors

Logical vectors in R contain Boolean values such as TRUE, FALSE and NA for Null values.

e R

R program to create Logical Vectors

Creating logical vector

using c() function

vl<- ¢(TRUE, FALSE, TRUE, NA)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

14

Displaying type of vector

typeof(vl)

Output:

[1] "logical"

Length of R vector

In R, the length of a vector is determined by the number of elements it contains. we can use
the length() function to retrieve the length of a vector.

Create a numeric vector

x <-c(1, 2, 3, 4, 5)

Find the length of the vector

length(x)

Create a character vector

y <- c("apple", "banana", "cherry")

Find the length of the vector

length(y)

Create a logical vector

z <- ¢(TRUE, FALSE, TRUE, TRUE)

Find the length of the vector

length(z)

Output:
> length(x)
[115

> length(y)
[1]13

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

15

> length(z)

[1] 4

Accessing R vector elements

Accessing elements in a vector is the process of performing operation on an individual element of a
vector. There are many ways through which we can access the elements of the vector. The most

common is using the ‘[]’, symbol.
Note: Vectors in R are 1 based indexing unlike the normal C, python, etc format.

R program to access elements of a VVector

accessing elements with an index number.
X<-¢(2,5,18,1,12)

cat('Using Subscript operator', X[2], \n")

by passing a range of values
inside the vector index.
Y<-c(4,8,2,1,17)

cat('Using combine() function', Y[c(4, 1)], '\n")

Output:
Using Subscript operator 5
Using combine() function 1 4

Modifying a R vector

Modification of a Vector is the process of applying some operation on an individual element of a
vector to change its value in the vector. There are different ways through which we can modify a
vector:

R

16

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

R program to modify elements of a Vector

Creating a vector

X<-¢(2,7,9,7,8,2)

modify a specific element

X[3] <- 1

X[2] <-9

cat(‘subscript operator’, X, \n")

Modify using different logics.

X[1:5]<- 0

cat('Logical indexing', X, "\n’)

Modify by specifying

the position or elements.

X<-X[c(3, 2, 1)]

cat('combine() function’, X)

Output:

subscript operator 2917 8 2
Logical indexing00000 2
combine() function 000

Deleting a R vector

Deletion of a Vector is the process of deleting all of the elements of the vector. This can be done by

assigning it to a NULL value.

Output:
Output vector NULL

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

R program to delete a Vector
Creating a Vector

M<-¢(8, 10, 2, 5)

set NULL to the vector

M<- NULL

cat('Output vector', M)

Sorting elements of a R Vector
sort() function is used with the help of which we can sort the values in ascending or descending
order.

R
R program to sort elements of a Vector
Creation of Vector
X<-¢(8,2,7,1,11,2)
Sort in ascending order
A<- sort(X)
cat(‘ascending order', A, \n)
sort in descending order
by setting decreasing as TRUE
B<- sort(X, decreasing = TRUE)

cat('descending order’, B)

Output:

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

18

ascending order 1 2

27811
descending order 11 8 7 2

21

Scalars

The simplest object type in R is a scalar. A scalar object is just a single value like a number or a
name. In the previous chapter we defined several scalar objects. Here are examples of humeric
scalars:

Examples of numeric scalars
a <-100

b <-3/100

c<-(a+h)/b

Scalars don’t have to be numeric, they can also be characters (also known as strings). In R, you
denote characters using quotation marks. Here are examples of character scalars:

Examples of character scalars
d <_ “Ship"

e <-'"cannon"

f <- "Do any modern armies still use cannons?"

As you can imagine, R treats numeric and character scalars differently. For example, while you
can do basic arithmetic operations on numeric scalars — they won’t work on character scalars. If
you try to perform numeric operations (like addition) on character scalars, you’ll get an error like
this one:

a<-"1"
b<-"2"
a+b

Error in a + b: non-numeric argument to binary operator

If you see an error like this one, it means that you’re trying to apply numeric operations to
character objects. That’s just sick and wrong.

##Vectors

Now let’s move onto vectors. A vector object is just a combination of several scalars stored as a
single object. For example, the numbers from one to ten could be a vector of length 10, and the
characters in the English alphabet could be a vector of length 26. Like scalars, vectors can be
either numeric or character (but not both!).

There are many ways to create vectors in R. Here are the methods we will cover in this chapter:

19
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Functions to create vectors.

Function Example Result

c(a, b, ...) c¢(1,5,9) 1,5,9

ab 1:5 1,2,3,4,5
seq(from, to, by, length.out) seq(from =0, to = 6, by = 2) 0,2,4,6

rep(x, times, each, length.out) rep(c(7, 8), times = 2, each = 2) 7,7,8,8,7,7,8,8

The simplest way to create a vector is with the c() function. The ¢ here stands for concatenate,
which means “bring them together”. The c() function takes several scalars as arguments, and
returns a vector containing those objects. When using c(), place a comma in between the objects
(scalars or vectors) you want to combine:

Let’s use the c() function to create a vector called a containing the integers from 1 to 5.

Create an object a with the integers from 1 to 5

a<-c¢(1,2,3,4,5)

Print the result

a

##[1]112345
As you can see, R has stored all 5 numbers in the object a. Thanks R!

You can also create longer vectors by combining vectors you have already defined. Let’s create a
vector of the numbers from 1 to 10 by first generating a vector a from 1 to 5, and a vector b from 6

to 10 then combine them into a single vector X:

a<-c¢(1,2,3,4,5)

b <-¢(6,7, 8,9, 10)

X <-c(a, b)

X

[11 1234567 8910

You can also create character vectors by using the ¢() function to combine character scalars into
character vectors:

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

20

LCeci nest o une fufle .

Figure This is not a pipe. It is a character vector.

char.vec <- c("Ceci", "nest", "pas", "une", "pipe")

char.vec

[1] "Ceci" "nest" "pas" "une" "pipe"

While the c() function is the most straightforward way to create a vector, it’s also one of the most
tedious. For example, let’s say you wanted to create a vector of all integers from 1 to 100. You
definitely don’t want to have to type all the numbers into a c() operator. Thankfully, R has many
simple built-in functions for generating numeric vectors. Let’s start with three of them: a:b, seq(),
and rep():

a:b

The a:b function takes two numeric scalars a and b as arguments, and returns a vector of numbers
from the starting point a to the ending point b in steps of 1.

Here are some examples of the a:b function in action. As you’ll see, you can go backwards or
forwards, or make sequences between non-integers:

1:10

#[1] 12345678910

10:1

1110987654321

2.5:8.5

##[1]25354555657.585
###seq()

The seq() function is a more flexible version of a:b. Like a:b, seq() allows you to create a sequence
from a starting number to an ending number. However, seq() has additional arguments that allow
you to specify either the size of the steps between numbers, or the total length of the sequence.

21

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

The seq() function has two new arguments: by and length.out. If you use the by argument, the

Argument Definition

from The start of the sequence

to The end of the sequence

by The step-size of the sequence

length.out The desired length of the final sequence (only use if you don’t specify by)

sequence will be in steps of the input to the by argument:
Create the numbers from 1 to 10 in steps of 1
seq(from=1,to =10, by = 1)

[11 1234567 8910

Integers from O to 100 in steps of 10

seq(from = 0, to = 100, by = 10)

[1] 0 10 20 30 40 50 60 70 80 90 100

If you use the length.out argument, the sequence will have a length equal to length.out.
Create 10 numbers from 1 to 5

seq(from =1, to = 5, length.out = 10)

[111.0141923283.23.74.1465.0

3 numbers from 0 to 100
seq(from = 0, to = 100, length.out = 3)

##[1] 0 50100

#ittrep()
Argument Definition
X A scalar or vector of values to repeat
times The number of times to repeat x
each The number of times to repeat each value within x
length.out The desired length of the final sequence

The rep() function allows you to repeat a scalar (or vector) a specified number of times, or to a
desired length. Let’s do some reps.

rep(x = 3, times = 10)

[113333333333

rep(x = ¢(1, 2), each = 3)

##[1]1111222

rep(x = 1:3, length.out = 10)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

22

[111231231231

As you can see, you can can include an a:b call within a rep()!

You can even combine the times and each arguments within a single rep() function. For example,
here’s how to create the sequence {1, 1,2,2,3,3,1,1,2,2, 3,3} with one call to rep():

rep(x = 1:3, each = 2, times = 2)

[11112233112233

Warning! Vectors contain either numbers or characters, not both

A vector can only contain one type of scalar: either numeric or character. If you try to create a
vector with numeric and character scalars, then R will convert all of the numeric scalars to
characters. In the next code chunk, I’ll create a new vector called my.vec that contains a mixture of
numeric and character scalars.

my.vec <- c¢("a", 1, "b", 2, "c", 3)

my.vec

##[1] "a" "1™ "b" 2" "c" 3"

As you can see from the output, my.vec is stored as a character vector where all the numbers are
converted to characters.

Declarations

In R, declarations typically refer to the process of creating or assigning values to variables, functions,
or objects. However, R doesn't require explicit "declarations” as in some other languages (e.g., Java or
C++). You can directly assign a value to a variable, and R will infer its type. That said, there are some
important concepts in R related to how variables and functions are "declared" and used.

1. Variable Declaration and Assignment

In R, variables are created when you assign a value to them. There’s no need to declare the type of a
variable, as R is dynamically typed. You can use either the <- or = assignment operators.

r
Copy code

Using <- (preferred)
x<-10

Using =
y=20

In this case, x and y are variables, and R automatically assigns their type based on the value assigned
to them (e.g., numeric, character, etc.).

2. Vectors (Creating Lists)
You can declare and assign vectors using the ¢() function, which concatenates elements into a vector.

r
Copy code

my_vector <- ¢(1, 2, 3, 4)

23
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

3. Functions (Creating Functions)
Functions in R are defined using the function() keyword. You can "declare™ a function like this:

r

Copy code

my_function <- function(a, b) {
return(a + b)

}

In this example, my_function is declared, and it takes two arguments a and b, returning their sum.
4. Data Frames (Creating Data Frames)

You can create a data frame by using the data.frame() function. This is a common structure for storing
datain R.

r

Copy code

my_data <- data.frame(
Name = c("Alice", "Bob", "Charlie"),
Age = ¢(25, 30, 35)

)

5. Constants (Global Constants)

While R doesn’t have constants in the strict sense (like const in C++), you can create a variable that
acts like a constant by simply not modifying its value after it’s set.

r

Copy code
Pl <-3.14159 # Using the naming convention for constants

6. Lists (Creating Lists)
Lists in R are used to store heterogeneous elements. You declare a list like this:
r

Copy code
my_list <- list(name="John", age=30, height=5.9)

7. Packages

To use external libraries or packages in R, you need to declare them using the library() or require()
function after installing them.

r
Copy code

install.packages(“ggplot2") # Install the package (if not already installed)
library(ggplot2) # Declare the package for use

24
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

8. Global and Local Variables

R has global and local scopes. Variables that are created inside a function are local to that function.
Variables that are created outside any function are global.

r
Copy code
X <-5 # Global variable

my_function <- function() {
y <-10 # Local variable
return(x +vy)

9. Global Assignment

You can assign values globally within a function using the <<- operator. This changes the value of a
variable outside the function.

r
Copy code
my_function <- function() {

X <<- 100 # Modify global x

¥

my_function()
print(x) # Prints 100

Summary of Common R Declarations:

Variable: x <- 10

Function: my_func <- function() { }

Vector: my_vector <- ¢(1, 2, 3)

Data Frame: my_df <- data.frame(a = 1.5, b = letters[1:5])
List: my_list <- list(name = "Alice", age = 25)

Package: library(ggplot2)

RECYCLING

In R, recycling refers to a behavior that occurs when vectors of different lengths are combined or
operated on element-wise. R automatically recycles the shorter vector to match the length of the
longer vector in these situations. This allows operations like addition, subtraction, and other element-
wise operations between vectors of different lengths without explicitly needing to make the vectors
the same length.

However, recycling happens under certain rules, and it’s important to understand the behavior to
avoid unintended results.

How Recycling Works

25
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

When performing operations between two vectors of different lengths, R will recycle the elements of
the shorter vector until it matches the length of the longer vector. The shorter vector will be reused
from the beginning once it reaches the end.

For example:

r
Copy code

Vectors of different lengths
x<-¢(1,2,3)

y <-¢(10, 20)

Adding vectors
Z<-X+ y
print(z)

Output:

r

Copy code
[1] 112213

e Inthis case, x has 3 elements and y has 2 elements.
e R "recycles" y so that it becomes c(10, 20, 10), and the operation proceeds element-wise:

o 1+10=11
o 2+20=22
o 3+10=13

Rules of Recycling

o Recycling only happens when the length of the shorter vector divides the length of the
longer vector. If it doesn't, R will give a warning.

o Length mismatch warning: If the length of the longer vector isn't a multiple of the shorter
vector's length, R will give a warning to indicate this behavior.

Example with Warning:
r

Copy code
x<-¢(1,2,3, 4

y <-¢(10, 20)

z<-x+y # This will give a warning
Output:

r

Copy code

[1]11 221324

Warning message:

In x +y : longer object length is not a multiple of shorter object length

Here, R recycles y to ¢(10, 20, 10, 20) to match the length of x, but since 4 (length of x) is not a
multiple of 2 (length of y), it gives a warning.

26
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Practical Example of Recycling

Recycling is frequently used in operations like plotting, element-wise transformations, and arithmetic
operations. Here’s an example with a more practical use case.

r
Copy code

Create a vector of numbers from 1 to 4
data<-c(l, 2, 3,4)

Create a vector of colors (2 colors)
colors <- ¢("red", "blue")

Assign colors to data points in a plot (recycling happens here)
plot(data, col=colors)

In this case, R recycles the colors vector so that it repeats the sequence "red"”, "blue" for each data
point in data.

Key Points:

e Recycling works when the length of the longer vector is a multiple of the shorter vector’s
length.

e Be cautious about potential bugs when the vectors are of mismatched lengths that don't fit the
recycling rule.

e It’s good practice to manually check lengths or ensure that you aren’t inadvertently relying
on unintended recycling, especially when performing complex operations.

Controlling Recycling

If you don't want recycling to occur or if you want to avoid warnings, you can always explicitly make
the vectors the same length, for example, by using rep() (repeat) or length() functions:

r
Copy code

Make sure both vectors are the same length
x<-¢(1,2, 3,4

y <-rep(c(10, 20), length.out = length(x)) # Recycle y manually

z<-Xx+y # Now no warning
print(z)

Output:

r
Copy code
[1]11 221324

27

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

In this example, rep(c(10, 20), length.out = length(x)) ensures that y is the same length as x, and no
warning is issued.

Common Vector Operations

Vectors are the most basic data types in R. Even a single object created is also stored in the form of
a vector. Vectors are nothing but arrays as defined in other languages. Vectors contain a sequence
of homogeneous types of data. If mixed values are given then it auto converts the data according to
the precedence. There are various operations that can be performed on vectors in R.

Creating a vector

Vectors can be created in many ways as shown in the following example. The most usual is the use
of ‘¢’ function to combine different elements together.

Use of 'c’' function

to combine the values as a vector.
by default the type will be double
X<-c(1,4,5,267)

print('using ¢ function’)

print(X)

using the seq() function to generate
a sequence of continuous values

with different step-size and length.

length.out defines the length of vector.

Y <-seq(1, 10, length.out = 5)

28
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

print('using seq() function’)

print(Y)

using "' operator to create

a vector of continuous values.
Z<-5:10

print('using colon’)

print(Y)

Output:

using ¢ function 145267
using seq function 1.00 3.25 5.50 7.75 10.00
using colon5 6 7 8 910

Accessing vector elements

Vector elements can be accessed in many ways. The most basic is using the ‘[]’, subscript operator.
Following are the ways of accessing Vector elements:

Note: vectors in R are 1 based indexed, unlike the normal C, python, etc format where indexing
starts from 0

Python3

Accessing elements using the position number.
X<-¢(2,5,8,1,2)

print(‘using Subscript operator’)

print(X[2])

Accessing specific values by passing

29
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

a vector inside another vector.

Y <-¢(4,5,2,1,7)

print(‘using ¢ function’)

print(Y[c(4, 1)])

Logical indexing

Z<-¢(5,2, 1,44, 3)

print('Logical indexing’)

print(Z[Z>3])

Output:

using Subscript operator 5
using c function 1 4

Logical indexing 5 4 4

Modifying a vector
Vectors can be modified using different indexing variations which are mentioned in the below
code:

Creating a vector

X <-¢(2,5,1,7,8,2)

modify a specific element

X[3] <- 11

print(‘Using subscript operator')

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

30

print(X)

Modify using different logics.

X[X>9] <- 0

print('Logical indexing’)

print(X)

Modify by specifying the position or elements.

X <= X[c(5, 2, 1)]

print('using ¢ function’)

print(X)

Output:

Using subscript operator2 511 7 8 2
Logical indexing2507 82

using c function 8 5 2

Deleting a vector
Vectors can be deleted by reassigning them as NULL. To delete a vector we use the NULL
operator.

e Python3

Creating a vector

X <-¢(5,2, 1, 6)

Deleting a vector

X <- NULL

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

31

print('Deleted vector’)

print(X)

Deleted vector NULL

Arithmetic operations
We can perform arithmetic operations between 2 vectors. These operations are performed element-
wise and hence the length of both the vectors should be the same.

Creating Vectors

X <-¢(5,2, 5,1, 51, 2)

Y <-¢(7,9 1,52 1)

Addition

Z<-X+Y

print('Addition’)

print(Z)

Subtraction

S<-X-Y

print('Subtraction’)

print(S)

Multiplication

M<-X*Y

print('Multiplication’)

print(M)

32
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Division
D<-X/Y
print('Division’)

print(D)

Output:

Addition 12 11 6 653 3

Subtraction -2 -7 4-449 1

Multiplication 35 18 5 5102 2

Division 0.7142857 0.2222222 5.0000000 0.2000000 25.5000000 2.0000000

Sorting of Vectors
For sorting we use the sort() function which sorts the vector in ascending order by default.

Creating a Vector

X <-¢(5,2, 5, 1, 51, 2)

Sort in ascending order

A <-sort(X)

print(‘sorting done in ascending order")
print(A)

sort in descending order.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

33

B <- sort(X, decreasing = TRUE)

print(‘sorting done in descending order’)

print(B)

Output:

sorting done in ascending order 1 2 2 5 551

sorting done in descending order51 55 2 2 1

Using all and any

In R, the functions all() and any() are used to evaluate logical conditions over vectors, matrices, or
other data structures. These functions are very useful for checking whether all or any elements in a
logical object satisfy a given condition.

1. all() Function

The all() function returns TRUE if all the elements in a logical vector (or the result of a logical
operation) are TRUE. If any element is FALSE, it returns FALSE.

Syntax:

r

Copy code

all(x, na.rm = FALSE)

o X: Alogical vector (or an object that can be coerced to logical).
e na.rm: If TRUE, NA values are ignored. If FALSE (the default), NA will cause the result to
be NA.
Example:

r
Copy code

Logical vector

X <- ¢(TRUE, TRUE, TRUE)
Check if all values are TRUE
all(x)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

34

Output: TRUE

Another example with one FALSE
X <- ¢(TRUE, FALSE, TRUE)

all(x)

Output: FALSE

With NA (using na.rm = TRUE)
X <- ¢(TRUE, NA, TRUE)

all(x, na.rm = TRUE)

Output: TRUE (ignores NA)

2. any() Function

The any() function returns TRUE if any of the elements in the vector are TRUE. It returns FALSE
only if all elements are FALSE. If the vector contains NA, it will return NA unless you specify na.rm
= TRUE.

Syntax:

r

Copy code

any(x, na.rm = FALSE)

o X: Alogical vector (or an object that can be coerced to logical).
e na.rm: If TRUE, NA values are ignored. If FALSE (the default), NA will cause the result to
be NA.

Example:

r

Copy code

Logical vector

X <- ¢(TRUE, FALSE, FALSE)

Check if any value is TRUE

any(x)
Output: TRUE

All values are FALSE

X <- ¢(FALSE, FALSE, FALSE)
any(x)

Output: FALSE

With NA (using na.rm = TRUE)
X <- ¢(FALSE, NA, FALSE)
any(x, na.rm = TRUE)

Output: FALSE (ignores NA)

3. Use Cases and Examples

Here are a few practical examples of how all() and any() might be used:

35
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Example 1: Checking conditions in a vector
You can use all() and any() to check conditions over vectors or arrays.

r

Copy code

Check if all values are positive

numbers <- c¢(2, 3, 4, 5)

all(numbers > 0) # Check if all numbers are greater than 0
Output: TRUE

Check if any value is negative

numbers <- ¢(2, -3, 4, 5)

any(numbers < 0) # Check if any number is less than 0
Output: TRUE

Example 2: Filtering or Subsetting Data
You might use these functions to filter or subset data based on certain conditions.

r

Copy code

Given a data frame of students' scores

scores <- data.frame(name = c("Alice", "Bob", "Charlie"),
score = ¢(85, 45, 90))

Check if all students passed (let's say passing score is 50)
all(scores$score >=50) # Returns TRUE if all students passed
Output: FALSE (since Bob's score is 45)

Check if any student failed
any(scores$score < 50) # Returns TRUE if any student failed
Output: TRUE (since Bob's score is less than 50)

Example 3: Handling NA Values

In real-world data, NA values are common. By using na.rm = TRUE, you can ignore missing values
in your checks.

r
Copy code

Vector with NA values

X <- ¢(TRUE, FALSE, NA, TRUE)

Check if all values are TRUE (ignoring NA values)
all(x, na.rm = TRUE) # Output: FALSE

Check if any value is TRUE (ignoring NA values)
any(x, na.rm = TRUE) # Output: TRUE

4. Combination of all() and any() with Logical Expressions
36

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

You can also combine all() and any() with logical expressions or conditions directly.

Example 1: Combining all() with logical operators

r

Copy code

Checking if all values in a vector are greater than 0
x<-¢(2,3,4,5)

all(x > 0) # TRUE, because all values are positive

Checking if all values are even
x<-¢(2,4,6,8)

all(x %% 2 == 0) # TRUE, because all numbers are even

Example 2: Using any() with logical operators
r

Copy code

Checking if any value in a vector is less than 0
x<-¢(1,-3,5, 6)

any(x < 0) # TRUE, because there is a negative number (-3)

Checking if any value in a vector is NA
x<-c(1, 2, NA, 4)
any(is.na(x)) # TRUE, because there is an NA value

5. Summary
e all(x): Returns TRUE if all elements of x are TRUE, otherwise FALSE.
e any(x): Returns TRUE if any element of x is TRUE, otherwise FALSE.
o Both functions are useful for evaluating logical conditions over vectors, matrices, or arrays.
e You can handle NA values using the na.rm = TRUE argument to ignore NA values in the

evaluation.

Vectorized operations — Filtering — Victoriesed if-then else — Vector Element names

Vectorized Operations in R

One of the core features of R is its ability to perform vectorized operations, which allows you to
apply operations to entire vectors (or other data structures like matrices or data frames) without the
need for explicit loops. This makes the code more concise and often much faster than traditional

looping constructs.

Let's break down some key concepts: vectorized operations, filtering, if-then-else (vectorized

conditional logic), and vector element names.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

37

1. Vectorized Operations

In R, many basic operations are vectorized. This means that R automatically applies the operation
element-wise to the vectors, matrices, or other data structures.

Example of Vectorized Operations:
r

Copy code

Vector addition (vectorized)
x<-¢(1,2,3)

y <-c(4, 5, 6)

Z<-X+y

print(z)

Output:

r

Copy code
[1]1579

Here, x + y automatically adds corresponding elements of x and y, which is much more efficient than
using a loop.

Other Vectorized Operations:
r

Copy code

Element-wise multiplication
Z<-X*y

print(z)

Element-wise division
z<-xly
print(z)

Element-wise comparison
z <-x >y # Checks if elements in x are greater than those iny
print(z)

2. Filtering Vectors

Filtering refers to selecting elements from a vector that meet a certain condition. In R, this can be
done using logical indexing. Logical indexing is vectorized, meaning you can apply a condition
across the entire vector to filter it.

Example: Filtering Values Greater than a Threshold
r

Copy code

x<-¢(1,2,3,4,5,6)

filtered_x <- X[x > 3]

print(filtered_x)

38
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Output:

r
Copy code
[1]1456

e X > 3 generates a logical vector ¢(FALSE, FALSE, FALSE, TRUE, TRUE, TRUE), and then

X[x > 3] selects the corresponding elements from x where the condition is TRUE.
Example: Filtering with Multiple Conditions
You can combine multiple conditions using logical operators (& for AND, | for OR).

r
Copy code

Filter values greater than 2 and less than 5
filtered X <- X[x >2 & x < 5]
print(filtered_x)

Output:

r

Copy code

[1]134

3. Vectorized If-Then-Else (Conditional Logic)

In R, you can use the ifelse() function to apply a vectorized version of an "if-then-else™ logic. This
allows you to assign values based on a condition in a vectorized manner without using for loops.

Syntax:

r

Copy code
ifelse(test, yes, no)

o test: The condition to check (a logical vector).
e yes: The value to return if the condition is TRUE.
e no: The value to return if the condition is FALSE.

Example: Applying ifelse() to a Vector
r

Copy code

x<-¢(1,2,3,4,5)

Replace values less than 3 with 0, otherwise keep the original value
result <- ifelse(x < 3, 0, x)

print(result)

Output:

r
Copy code

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

39

[1]00345

In this case, values of x that are less than 3 are replaced with 0, and the rest of the values remain
unchanged.

Example: More Complex Conditions
You can also use more complex conditions in ifelse().

r
Copy code
x<-¢(1,2,3,4,5)

Use different values for different conditions
result <- ifelse(x < 2, "Low", ifelse(x < 4, "Medium", "High"))
print(result)

Output:

r
Copy code
[1] "Low™ "Low" "Medium" "Medium" "High"

In this example, we apply nested ifelse() to assign different categories ("Low", "Medium", "High")
based on the values in x.

4. VVector Element Names

In R, vectors can have named elements. This allows you to access or modify elements by name rather
than by position. You can assign names to elements of a vector using the names() function.

Assigning Names to a Vector:
r

Copy code

Create a vector

x <-¢(10, 20, 30)

Assign names to the elements
names(x) <- c("A", "B", "C")
print(x)

Output:

r
Copy code
A BZC
10 20 30

Now you can access or modify elements by their names:

r
Copy code
Access by name

40

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

print(x["A"])

Modify by name
X["B"] <- 25
print(x)

Output:

r
Copy code
A B C
10 25 30

Vector Element Names in Conditional Operations
You can also use element names in vectorized conditional operations:

r
Copy code

Create a vector with named elements
x<-c(A=10,B=20,C=230)

Conditional filtering based on names
X[x > 15]

Output:

r
Copy code
BC

20 30
Example: Adding Names Dynamically

You can also dynamically assign names to vector elements. For instance, if you have a vector of
numbers and a corresponding vector of names, you can combine them:

r
Copy code

Numeric vector and names
numbers <- ¢(100, 200, 300)
labels <- c("X", "Y","Z")

Assign names from another vector
names(numbers) <- labels
print(numbers)

Output:

r

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

41

Copy code
XY zZ
100 200 300

5. Summary of Key Concepts

e Vectorized Operations: R performs operations on entire vectors without the need for explicit
loops. Operations are applied element-wise across the vector.

o Filtering: Use logical conditions to filter vectors. This is done using logical indexing, which
is a vectorized operation.

o If-Then-Else: Use ifelse() for vectorized conditional logic, where you can specify what
happens for TRUE and FALSE conditions.

o Vector Element Names: You can assign names to the elements of a vector, which allows you
to access and manipulate the vector by name.

UNIT Il Matrices Creating matrices — Matrix Operations — Applying Functions to Matrix Rows
and Columns — Adding and deleting rows and columns - Vector/Matrix Distinction — Avoiding
Dimension Reduction — Higher Dimensional arrays — lists — Creating lists — General list
operations — Accessing list components and values — applying functions to lists — recursive lists.

Matrices

Matrices in R are fundamental data structures, particularly useful in statistical and mathematical
computations. They are essential because they provide an efficient way to store and manipulate
tabular data where all elements are of the same type (usually numeric). Here's why matrices are
important in R:

1. Compact Representation of Data

A matrix is a two-dimensional array-like structure, where data is stored in rows and columns. It is
well-suited for situations where all data is homogeneous.

Example:
R
matrix_example <- matrix(1:6, nrow = 2, ncol = 3)
print(matrix_example)
Output:
[11[2] [3]

[1] 1 3 5
[2] 2 4 6
2. Simplifies Mathematical Operations

Matrices are optimized for matrix algebra, such as addition, subtraction, multiplication, and solving
systems of linear equations.

Example:

42
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Matrix addition

A <- matrix(1:4, nrow = 2)
B <- matrix(5:8, nrow = 2)
C<-A+B

print(C)

Output:

[1]1[2]
[1] 6 8
[2] 8 10

3. Efficient Data Manipulation

Matrix operations are vectorized in R, meaning they are faster and more efficient than loops for large
datasets.

Example:

R

Element-wise multiplication

A*B

4. Widely Used in Statistical Analysis

Matrices are the basis for many statistical techniques, such as:
Linear regression

Principal Component Analysis (PCA)

Eigenvalue decomposition
Correlation and covariance calculations

5. Integrates with Other R Functions

Matrices are supported by many R functions, such as solve() for solving linear systems, t() for
transpose, and eigen() for eigenvalues.

Example:

R
Transpose of a matrix
t(A)

6. Visualization and Modeling
Matrices are often used to store and manipulate data for visualization (e.g., heatmaps) and models that

require structured input data.

43
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

In summary, matrices in R are a versatile and essential tool for numerical and statistical programming,
enabling efficient data handling and mathematical computations.

Matrices : Creating matrices

Creating matrices in R programming involves using the matrix() function, which allows you to define
a matrix by specifying its elements, dimensions, and layout (row-wise or column-wise). Below are the
basic steps and examples to create matrices in R:

1. Creating a Simple Matrix

R

Create a 3x3 matrix with numbers 1 to 9
matrix_example <- matrix(1:9, nrow = 3, ncol = 3)
print(matrix_example)

Output:

(11 [2] [3]
1] 1 4 7
[2] 2 5 8
[3] 3 6 9

2. Changing the Filling Order
By default, R fills a matrix column-wise. You can change it to row-wise using the byrow argument.
R
Create a 3x3 matrix filled row-wise
matrix_rowwise <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE)
print(matrix_rowwise)
Output:
(11 [2] [3]
[1,
Matrix operations in R are straightforward and intuitive. R provides built-in functions to perform a

wide variety of matrix operations, including basic arithmetic, transformations, and advanced
computations like decompositions. Here's an overview of key matrix operations in R:

1. Basic Arithmetic Operations

44
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Matrix operations in R are element-wise by default.

Addition and Subtraction
R

A <- matrix(1:4, nrow = 2)
B <- matrix(5:8, nrow = 2)

Addition
C add<-A+B
print(C_add)

Subtraction
Csub<-A-B
print(C_sub)

Output:

csharp
Addition:
[1][2]
[1,] 6 10
[2] 8 12

Subtraction:

[1] [,2]
[1] 4 -4
[2] 4 -4

Multiplication (Element-Wise)
R

C mult<-A*B

print(C_mult)

Output:

CSss
Copy code

L1 [.2]

[1] 5 21
[2] 12 32

Division (Element-Wise)
R

C_div<-A/B
print(C_div)

Output:
CSs

Copy code
L1 [2]

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

45

[1]0.2 0.4285714
[2,] 0.4 0.5000000

2. Matrix Multiplication

Matrix multiplication (dot product) is performed using the %*% operator.

R
Copy codeA <- matrix(c(1, 2, 3, 4), nrow = 2)
B <- matrix(c(2, 0, 1, 2), nrow = 2)

Matrix multiplication
C_dot<- A%*% B
print(C_dot)

Output:

[11[.2]
[1] 4 4
[2] 10 8
3. Transpose of a Matrix
The t() function transposes a matrix.
R
transpose <- t(A)
print(transpose)

Output:

CSss
Copy code

[1][2]
1] 1 3
2] 2 4

4. Determinant

The det() function calculates the determinant of a square matrix.

R
determinant <- det(A)
print(determinant)

5. Inverse of a Matrix

The solve() function computes the inverse of a matrix.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

46

inverse <- solve(A)
print(inverse)
6. Eigenvalues and Eigenvectors
The eigen() function computes the eigenvalues and eigenvectors.
R
eigen_result <- eigen(A)
print(eigen_result)
7. Diagonal Operations
The diag() function extracts or creates diagonal matrices.
e Extract diagonal:

R
diag(A)

o Create diagonal matrix:
R
diag(c(1, 2, 3))
8. ldentity Matrix
The diag() function can also create an identity matrix.
R

| <- diag(3) # 3x3 identity matrix
print(1)

9. Solving Linear Systems

Solve a system of linear equations AX=BAX = BAX=B using solve().

R
A <- matrix(c(2, 1, 1, 3), nrow = 2)
B<-c(1,2)

Solve for X
X <-solve(A, B)

print(X)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

47

10. Singular VValue Decomposition (SVD)
The svd() function computes the singular value decomposition.

R
svd_result <- svd(A)
print(svd_result)

11. Element Access and Manipulation

o Access specific elements: A[1, 2]
o Access entire row: A[1,]
e Access entire column; A[, 2]

These operations allow efficient numerical computation and data manipulation, making matrices one
of the most powerful tools in R!

Applying Functions to Matrix Rows and Columns

Applying functions to rows or columns of a matrix in R is a common task. R provides several tools
for this, including the apply() function, which is versatile and efficient. Here's a guide to using it and
other relevant functions:

1. Using apply()
The apply() function allows you to apply a function to the rows or columns of a matrix.

Syntax:
R
apply(X, MARGIN, FUN, ...)

e X: The matrix.
e MARGIN: 1 for rows, 2 for columns.
e FUN: The function to apply (e.g., sum, mean).

Example: Row and Column Sums

R

Create a matrix

matrix_example <- matrix(1:12, nrow = 3, ncol = 4)

Sum of rows
row_sums <- apply(matrix_example, 1, sum)
print(row_sums)

48

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Sum of columns

column_sums <- apply(matrix_example, 2, sum)
print(column_sums)

Output:

csharp
Copy code
Row sums:
[1] 22 26 30

Column sums:
[1]12151821

Example: Applying a Custom Function
You can define your own function to apply.

R

Mean of rows

row_means <- apply(matrix_example, 1, mean)
print(row_means)

Custom function: Range of each column
column_ranges <- apply(matrix_example, 2, function(x) max(x) - min(x))
print(column_ranges)

2. Using rowSums(), colSums(), rowMeans(), colMeans()
For common operations like sums and means, R has optimized functions that are faster than apply().

R

Row and column sums

row_sums <- rowSums(matrix_example)
column_sums <- colSums(matrix_example)

Row and column means
row_means <- rowvMeans(matrix_example)
column_means <- colMeans(matrix_example)

print(row_sums)
print(column_sums)
print(row_means)
print(column_means)

3. Using lapply() or sapply()

49
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

When dealing with individual rows or columns as lists or vectors, lapply() and sapply() can be useful.

Example: Applying Functions with sapply()

R

Transpose matrix to treat rows as columns

row_means <- sapply(1:nrow(matrix_example), function(i) mean(matrix_example[i,]))
print(row_means)

4. Using the dplyr Package
For more advanced row/column operations, the dplyr package is handy.

Example: Summing Rows
R

library(dplyr)

Convert matrix to data frame
df <- as.data.frame(matrix_example)

Row sums using dplyr
df <- df %>% mutate(row_sum = rowSums(across()))

print(df)

5. Working with Specific Columns or Rows

You can use indexing to apply functions to specific rows or columns.

Example: Apply to Specific Columns

ESquare values in the first column

matrix_example[, 1] <- matrix_example[, 1]"2

print(matrix_example)

By using these tools, you can efficiently manipulate and analyze rows and columns of matrices in R!
Adding and deleting rows and columns

Adding and deleting rows and columns in a matrix in R can be easily achieved using functions like

rbind() and cbind() for adding rows and columns, and indexing for deleting them. Here's how you can
do it:

1. Adding Rows to a Matrix

Use the rbind() function to add one or more rows.

50
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Example: Adding a Row

R

Create a matrix

matrix_example <- matrix(1:6, nrow = 2, ncol = 3)
print(matrix_example)

Add a new row

new_row <-c(7, 8, 9)

matrix_with_row <- rbind(matrix_example, new_row)
print(matrix_with_row)

Output:

less
Original Matrix:

[11[2] [,3]
[1] 1 35
2] 2 4 6

Matrix After Adding Row:
(11 [.2] [.3]
1] 1 3 5
[2] 2 4 6
3] 7 8 9
2. Adding Columns to a Matrix

Use the cbind() function to add one or more columns.

Example: Adding a Column

R

Add a new column

new_column <- ¢(10, 11)

matrix_with_column <- chind(matrix_example, new_column)
print(matrix_with_column)

Output:

[11[.2] [.3] [.4]
[1J 1 3 5 10
2] 2 4 6 11

3. Deleting Rows from a Matrix
You can delete rows by indexing and omitting the rows you want to remove.

Example: Deleting a Row

R

Delete the second row
matrix_without_row <- matrix_example[-2,]
print(matrix_without_row)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

51

Output:
Css

[1]1[2] [.3]
[1] 1 3 5

4. Deleting Columns from a Matrix

Similarly, delete columns by indexing and omitting the columns.

Example: Deleting a Column

R

Delete the third column
matrix_without_column <- matrix_example[, -3]
print(matrix_without_column)

Output:

[1][2]
1] 1 3
2] 2 4

5. Adding Multiple Rows or Columns

You can add multiple rows or columns at once using rbind() and cbindy().

Example: Adding Multiple Rows

R

Add multiple rows

new_rows <- matrix(c(7, 8, 9, 10, 11, 12), nrow = 2)
matrix_with_rows <- rbind(matrix_example, new_rows)
print(matrix_with_rows)

Example: Adding Multiple Columns

R

Add multiple columns

new_columns <- matrix(c(10, 11, 12, 13), ncol = 2)
matrix_with_columns <- cbind(matrix_example, new_columns)
print(matrix_with_columns)

6. Replacing Rows or Columns

Replace rows or columns by assigning new values.
Example: Replace a Row

R

matrix_example[1,] <- ¢(100, 101, 102)
print(matrix_example)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

52

Example: Replace a Column

R

matrix_example][, 2] <- ¢(200, 201)
print(matrix_example)

These techniques provide flexibility in managing matrix structures, making it easy to modify and
adapt data in R

Vector/Matrix Distinction
In R, vectors and matrices are fundamental data structures, but they are distinct in their structure and

intended usage. Understanding the distinction between them is crucial for effective data manipulation
and computation. Here's a breakdown:

1. Vector:

A vector is a one-dimensional array that contains elements of the same type (e.g., numeric, character,
logical).

Key Characteristics:
e One-dimensional: A single row or column of data.
o Homogeneous: All elements must be of the same type.
e Created using the c() or similar functions.
Example:
R
Create a numeric vector
v<-¢(1,2 3,4
print(v)
Output:
[1]11234
2. Matrix:
A matrix is a two-dimensional array with rows and columns, where all elements are of the same type.
Key Characteristics:
e Two-dimensional: Has rows and columns (e.g., mxnm \times nmxn).
e Homogeneous: All elements must be of the same type.
o Created using the matrix() function, or by combining vectors with rbind() or cbind().

Example:

Create a 2x2 numeric matrix

53

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

m <- matrix(1:4, nrow = 2)
print(m)

Output:

[1] [,2]
1] 1 3
2] 2 4

Key Distinctions:

Vector Matrix
Feature
Dimension 1D (length) 2D (rows and columns)
Creation (), seq(), rep() matrix(), rbind(), chind()
Homogeneity Homogeneous Homogeneous
Access Single index: v[1] Row and column indices: m[1, 2]

Structure Linear sequence of elements Rectangular grid of elements

3. Conversion Between Vectors and Matrices
Convert a Vector to a Matrix
You can convert a vector into a matrix using matrix().

R

v<-c(1,23,4)

m <- matrix(v, nrow = 2, ncol = 2)
print(m)

Output:

[1][2]
1] 1 3
2] 2 4

Flatten a Matrix to a Vector

Use the as.vector() function or simply reference the matrix.
R

v_from_matrix <- as.vector(m)

print(v_from_matrix)

Output:

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

54

csharp

[1]11234

4. Dimensionality

The dim() function reveals the dimensions of an object.

e Vector: A vector has no dim attribute; only its length matters.

R
length(v) # Returns 4
dim(v) # Returns NULL

e Matrix: A matrix always has dimensions.
R
dim(m) # Returns c(2, 2)

5. When to Use Vectors or Matrices?
e Use Vectors: When working with linear data or a single set of observations.

e Use Matrices: When dealing with tabular data, linear algebra, or computations requiring row-
column relationships.

Summary

e Vectors: Simplest structure, 1D, homogeneous.
e Matrices: More structured, 2D, homogeneous, optimized for mathematical operations.

Understanding these distinctions ensures you use the appropriate structure for your tasks in R!
Avoiding Dimension Reduction

In R, dimension reduction occurs when operations on matrices or arrays simplify the structure, often
converting matrices to vectors. This can happen when selecting a single row or column from a matrix,
as R by default drops the dimensions. To avoid this, you can explicitly control this behavior using the
drop = FALSE argument. Here's how to handle it:

1. The Default Behavior

When selecting a single row or column from a matrix, R reduces the matrix to a vector.

55

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Example: Dimension Reduction

R

Create a matrix

m <- matrix(1:9, nrow = 3, ncol = 3)
print(m)

Select the first row
rowl <- m[1,]
print(rowl)

Output:

Original Matrix:
L1 [21[3]

1,
2,
3

—r——
—a e
WN -
o O b
©O© 0

Row Selection (Reduced to Vector):
[1]147

In this example, m[1,] extracts the first row as a vector, dropping the matrix structure.

2. Preventing Dimension Reduction
Use drop = FALSE when indexing to preserve the matrix structure.

Example: Retaining Matrix Structure

R

Select the first row and keep it as a matrix
rowl matrix <- m[1, , drop = FALSE]
print(rowl_matrix)

Select the first column and keep it as a matrix
coll_matrix <- m[, 1, drop = FALSE]
print(coll_matrix)

Output:

less

Row as Matrix:
[1] [.2] [3]

1] 1 4 7

Column as Matrix:
[1]

[1] 1

[2)]

[3] 3

Ms.M.BALAMONICA M.Sc

ASSISTANT PROFESSOR

56

3. General Syntax
To avoid dimension reduction in any operation:

e When extracting rows: matrix[row, , drop = FALSE]
e When extracting columns: matrix[, col, drop = FALSE]
e When extracting elements but retaining structure: Use slicing instead of single indexing.

4. Arrays and Dimension Preservation

In multi-dimensional arrays, a similar issue occurs, but you can use drop = FALSE to retain higher-
dimensional structures.

Example: 3D Array
R
Create a 3D array

array_example <- array(1:24, dim =c(3, 4, 2))

Select a 2D slice without reducing dimensions
slice <- array_example[,,1, drop = FALSE]
print(dim(slice)) # Dimensions are preserved

5. Why Avoid Dimension Reduction?

o Data Consistency: Prevents errors in downstream operations by preserving the expected
structure.
o Code Robustness: Avoids implicit conversions that could lead to unexpected behavior.

6. Forcing Dimension Reduction

If you want to enforce dimension reduction (e.g., explicitly convert to a vector), you can use
as.vector() or deliberately omit drop.

Summary

e By default, R simplifies dimensions when selecting rows or columns from matrices.
e Use drop = FALSE to preserve the matrix or array structure.
e Always check your intended structure with dim() to ensure correctness in your workflow.

In R, dimension reduction occurs when operations on matrices or arrays simplify the structure, often
converting matrices to vectors. This can happen when selecting a single row or column from a matrix,
as R by default drops the dimensions. To avoid this, you can explicitly control this behavior using the
drop = FALSE argument. Here's how to handle it:

57
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

1. The Default Behavior
When selecting a single row or column from a matrix, R reduces the matrix to a vector.

Example: Dimension Reduction

R

Create a matrix

m <- matrix(1:9, nrow = 3, ncol = 3)
print(m)

Select the first row
rowl <- m[1,]
print(rowl)

Output : Original Matrix:

[1]1[2] [.3]
1] 1 4 7
2] 2 5 8
3] 3 6 9

Row Selection (Reduced to Vector):
[1]147

In this example, m[1,] extracts the first row as a vector, dropping the matrix structure.
2. Preventing Dimension Reduction
Use drop = FALSE when indexing to preserve the matrix structure.

Example: Retaining Matrix Structure

R

Select the first row and keep it as a matrix
rowl matrix <- m[1, , drop = FALSE]
print(rowl_matrix)

Select the first column and keep it as a matrix
coll_matrix <- m[, 1, drop = FALSE]
print(coll_matrix)

Output:

less

Copy code

Row as Matrix:
[1] [,2] [3]

1] 1 4 7

Column as Matrix:
[1]

[1] 1

[2] 2

Ms.M.BALAMONICA M.Sc

ASSISTANT PROFESSOR

58

[3] 3

3. General Syntax
To avoid dimension reduction in any operation:
e When extracting rows: matrix[row, , drop = FALSE]

e When extracting columns: matrix[, col, drop = FALSE]
e When extracting elements but retaining structure: Use slicing instead of single indexing.

4. Arrays and Dimension Preservation

In multi-dimensional arrays, a similar issue occurs, but you can use drop = FALSE to retain higher-
dimensional structures.

Example: 3D Array
R
Create a 3D array
array_example <- array(1:24, dim =¢c(3, 4, 2))
Select a 2D slice without reducing dimensions
slice <- array_example[,,1, drop = FALSE]
print(dim(slice)) # Dimensions are preserved
5. Why Avoid Dimension Reduction?
o Data Consistency: Prevents errors in downstream operations by preserving the expected

structure.
e Code Robustness: Avoids implicit conversions that could lead to unexpected behavior.

6. Forcing Dimension Reduction

If you want to enforce dimension reduction (e.g., explicitly convert to a vector), you can use
as.vector() or deliberately omit drop.

Summary

e By default, R simplifies dimensions when selecting rows or columns from matrices.
e Use drop = FALSE to preserve the matrix or array structure.
e Always check your intended structure with dim() to ensure correctness in your workflow.

Higher Dimensional arrays

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

59

Higher-dimensional arrays in R are an extension of matrices, allowing for data storage and
manipulation in more than two dimensions. They are particularly useful for representing complex
data, such as tensors or datasets with multiple attributes.

1. Creating Higher-Dimensional Arrays
Use the array() function to create arrays with more than two dimensions.

Syntax:
R
array(data, dim, dimnames)

o data: The elements to be included in the array.

e dim: A vector specifying the dimensions (e.g., number of rows, columns, and additional
dimensions).

e dimnames: Optional names for dimensions.

Example: Creating a 3D Array

R

Create a 3D array with dimensions 3x3x2
array_3d <- array(1:18, dim =¢(3, 3, 2))
print(array_3d)

Output

1 1

L1 [2] [3]
1]
2]
3]
2
[

WN -

4 7
5 8
6 9

v p— p— —

11 [2] [3]
[1,] 10 13 16
[2] 11 14 17
[3] 12 15 18

2. Naming Dimensions
You can add meaningful names to the dimensions for better readability.

Example: Adding Dimension Names
R
Add names to dimensions
dimnames(array_3d) <- list(

rows = ¢("R1", "R2", "R3"),

cols = c("C1", "C2", "C3"),

layers = c("L1", "L2")
)
print(array_3d)

Output:

markdown
|

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

60

v, L2
Cilcz2C3
R1 101316
R2 111417
R3 121518

3. Accessing Elements
Access elements using indices for all dimensions.

Access Specific Element
Access the element at row 2, column 3, layer 1
array_3d[2, 3, 1]

Output:

[1]18

Access Entire Slices

R

Copy code

Access the entire first layer
array_3d[, , 1]

Access the second column across all layers
array_3d[, 2,]

4. Manipulating Higher-Dimensional Arrays
Reshaping
Change the dimensions of an array using the dim() function.

R

Reshape array to 2x3x3
dim(array_3d) <-¢(2, 3, 3)
print(array_3d)
Combining Arrays

Use functions like abind() from the abind package to combine arrays.

R
library(abind)

Combine along a new dimension
array_combined <- abind(array_3d, array_3d, along = 4)
print(dim(array_combined))

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

61

5. Applying Functions
Use apply() to apply functions along specific dimensions of an array.

Example: Apply Function Across a Dimension
R

Sum along rows for each layer

row_sums <- apply(array_3d, c(1, 3), sum)
print(row_sums)

6. Common Functions for Arrays

dim(): Get or set the dimensions of an array.
dimnames(): Get or set dimension names.

array(): Create an array.

apply(): Apply a function along specific dimensions.

7. Visualization

Use visualization libraries like lattice or ggplot2 for higher-dimensional array data. Flatten data into a
2D structure (e.g., using as.data.frame()) for plotting.

Example: Higher-Dimensional Data Analysis

R

Create a 4D array

array_4d <- array(1:24, dim=c¢(3, 2, 2, 2))
print(array_4d)

Extract a 2D slice
slice_2d <- array_4d[,,1,2]
print(slice_2d)

Arrays in R are versatile and extend the capabilities of matrices to higher dimensions, making them
useful for multi-attribute data representation and manipulation.

Lists
Lists in R
A list in R is a versatile data structure that can store elements of different types (e.g., numbers, strings,

vectors, matrices, other lists). Unlike vectors or matrices, lists are heterogeneous, making them useful
for grouping related but diverse data.

62
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

1. Creating Lists
Use the list() function to create lists.

Example: Creating a Simple List
R
Create a list with different data types
my_list <- list(
name = "Alice",
age = 30,
scores = ¢(85, 90, 78),
matrix = matrix(1:4, nrow = 2)

print(my_list)

Output:

$name

[1] "Alice"

$age

[1] 30

$scores

[1] 8590 78

$matrix
[1][2]

1] 1 3
2] 2 4

2. General List Operations

a. Naming Elements

You can assign or modify names of list components.

R

names(my_list) <- c("Name", "Age", "Scores", "Matrix")

print(my_list)
b. Combining Lists

Use c() to combine lists.

R
listl <- list(a=1,b =2)

list2 <- list(c = 3, d = 4)
combined_list <- c(list1, list2)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

63

print(combined_list)
c. Length of a List

The length() function returns the number of elements in a list.

R
print(length(my_list)) # Output: 4

3. Accessing List Components and Values
a. Using $
Access elements by name.

R
print(my_list$Name) # Output: "Alice"
**p, Using [[1]

Access elements by index or name.
R

print(my_list[[1]]) # Output: "Alice"
print(my_list[["Name"]]) # Output: "Alice"

c. Using []
Returns a sublist, not the element itself.

R
print(my_list[1]) # Returns a list containing the first element

d. Nested Access

Access elements inside nested lists.
R

nested_list <- list(a = list(b = list(c = 5)))
print(nested_listab$c) # Output: 5

4. Applying Functions to Lists

a. lapply()

Applies a function to each element and returns a list.

R

Square each element

result <- lapply(my_list$scores, function(x) x"2)
print(result)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

64

b. sapply()

Applies a function to each element and simplifies the output to a vector or matrix.

R
result <- sapply(my_list$scores, function(x) x"2)
print(result)

c. vapply()
A safer version of sapply() with pre-specified output type.

R
result <- vapply(my_list$scores, function(x) x"2, numeric(1))
print(result)

d. mapply()
Applies a function to multiple list-like objects.

R

listl <- list(1, 2, 3)

list2 <- list(4, 5, 6)

result <- mapply(function(x, y) x +y, listl, list2)
print(result)

5. Recursive Lists

A recursive list (or nested list) is a list that contains other lists as elements.

Example: Creating a Recursive List

R

recursive_list <- list(
a=list(x=1,y=2),
b=list(z=3,w=list(p=4,9=5))

)

print(recursive_list)

Accessing Nested Components

Use $ or [[]] repeatedly or in combination.

R

print(recursive_listbw$p) # Output: 4
print(recursive_list[[2]1[[2]1[["p"1]) # Output: 4
6. Modifying Lists

You can modify or extend lists by assigning values.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

65

Add or Modify Elements

R

Add a new element
my_listsnew_element <- "Hello"
print(my_list)

Modify an existing element

my_list$Age <- 31
print(my_list)

Remove Elements
Set an element to NULL to remove it.
R

my_list$Scores <- NULL
print(my_list)

Summary
o Lists can store heterogeneous data, including vectors, matrices, and other lists.
e Accesselementsusing $, [[]], or [].
e Use functions like lapply() and sapply() to apply operations to lists.
o Recursive lists allow nested structures, enabling complex data representations.

UNIT 111
Creating Data Frames — Matrix-like operations in frames — merging Data frames —
Applying functions to Data Frames — Factors and Tables — Factors and levels —
Common Functions used with factors — Working with tables — Other factors and table
related functions — Control statements — Arithmetic and Boolean operators and values
— Default Values for arguments — Returning Boolean Values — Functions are objects —
Recursion

Creating Data Frames

In R, data frames are one of the most commonly used data structures for storing and manipulating
tabular data. A data frame is essentially a collection of vectors of equal length, where each vector can
be of a different data type (e.g., numeric, character, factor, etc.). Below are several ways to create data
frames in R:

1. Creating a Data Frame from Vectors

You can create a data frame by combining vectors using the data.frame() function.
Create vectors

name <- c("Alice", "Bob", "Charlie™)

age <- ¢(25, 30, 35)

66
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

height <- ¢(5.5, 6.0, 5.8)
Combine vectors into a data frame
df <- data.frame(Name = name, Age = age, Height = height)
Print the data frame
print(df)
Output:
Name Age Height

1 Alice 25 55
2 Bob 30 6.0
3 Charlie 35 5.8
2. Creating a Data Frame from a List
You can also create a data frame from a list of vectors.
Create a list of vectors
my_list <- list(Name = c("Alice", "Bob", "Charlie")

Age = ¢(25, 30, 35),

Height = ¢(5.5, 6.0, 5.8))
Convert the list to a data frame
df <- data.frame(my_list)
Print the data frame
print(df)
Output:
Name Age Height
1 Alice 25 55
2 Bob 30 6.0
3 Charlie 35 5.8

You can convert a matrix into a data frame using the as.data.frame() function.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Create a matrix
my_matrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
Convert the matrix to a data frame
df <- as.data.frame(my_matrix)
Print the data frame
print(df)
Output:
V1V2V3
1135
2246
4. Creating a Data Frame from External Data

You can read data from external files (e.g., CSV, Excel) into a data frame using functions
like read.csv() or read.table().

Read a CSV file into a data frame
df <- read.csv("path/to/your/file.csv")
Print the data frame
print(df)
Name Age Height
1 Alice 25 55
2 Bob 30 6.0
3 Charlie 35 5.8
5. Creating an Empty Data Frame
You can create an empty data frame and then add columns to it.
Create an empty data frame
df <- data.frame()
Add columns to the data frame
df$Name <- c("Alice", "Bob", "Charlie™)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

68

df$Age <- ¢(25, 30, 35)
Print the data frame

print(df)

Output:
Name Age
1 Alice 25
2 Bob 30
3 Charlie 35
6. Creating a Data Frame with tibble (from the tibble package)

The tibble package provides a modern alternative to data frames. You can create a tibble using
the tibble() function.

Install and load the tibble package
install.packages("tibble™)
library(tibble)
Create a tibble
df <- tibble(Name = c("Alice", "Bob", "Charlie"),
Age = c(25, 30, 35)
Height = ¢(5.5, 6.0, 5.8))
Print the tibble
print(df)
Output:
Atibble: 3x 3
Name Age Height
<chr> <dbl> <dbl>
1Alice 25 55

2Bob 30 6

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

69

3 Charlie 35 5.8

The data.table package provides an enhanced version of data frames. You can create a data table using
the data.table() function.

Install and load the data.table package

install.packages("data.table")

library(data.table)

Create a data table

dt <- data.table(Name = c("Alice", "Bob", "Charlie"),
Age = c(25, 30, 35),
Height = ¢(5.5, 6.0, 5.8))

Print the data table

print(dt)

Output

Name Age Height

1: Alice 25 55

2: Bob 30 6.0

3: Charlie 35 5.8

Summary

Use data.frame() to create a data frame from vectors or a list.

Use as.data.frame() to convert a matrix to a data frame.

Use read.csv() or read.table() to read external data into a data frame.

Use tibble() from the tibble package for a modern alternative to data frames.
Use data.table() from the data.table package for enhanced data frames.

These methods provide flexibility in creating and manipulating data frames in R, depending on
specific needs.

Matrix-like operations in frames
In R, data frames are designed to store tabular data, similar to matrices, but with the added flexibility
of allowing columns to contain different data types (e.g., numeric, character, factor). While data frames
are not matrices, you can perform matrix-like operations on them by converting them to matrices or
using specific functions that work with data frames. Below are some common matrix-like operations
can be performed on data frames in R:

70
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

1. **Convert a Data Frame to a Matrix**

To perform matrix operations, you can convert a data frame to a matrix using the “as.matrix()"
function. Note that all columns must be of the same data type (e.g., numeric) for this to work properly.

Create a data frame
df <- data.frame(A = ¢(1, 2, 3), B=c¢(4, 5, 6), C=¢(7, 8, 9))
Convert to a matrix
mat <- as.matrix(df)
Print the matrix
print(mat)
Output:
ABC
[1]147
[2]258
[3]1369
2. **Matrix-like Operations on Data Frames**

Even without converting to a matrix, you can perform some matrix-like operations directly on data
frames.

Transpose a Data Frame
Use the “t()" function to transpose a data frame. Note that the result will be a matrix, not a data frame.
Transpose the data frame
transposed_df <- t(df)
Print the transposed result
print(transposed_df)
Output:
[11[.2] [.3]
A 1l 2 3
B 4 5 6
cC 7 89
Row and Column Sums
Use “rowSums()” and “colSums()" to calculate sums of rows and columns, respectively.
Column sums
col_sums <- colSums(df)
Row sums

row_sums <- rowSums(df)

71

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

print(col_sums)
print(row_sums)
Output:
ABC
61524
[1] 12 1518
Row and Column Means
Use ‘rowMeans()” and “colMeans()" to calculate means of rows and columns, respectively.
Column means
col_means <- colMeans(df)
Row means
row_means <- rowvMeans(df)
print(col_means)
print(row_means)
Output:
ABC
258
[1]456
3. **Subsetting Data Frames (Similar to Matrix Indexing)**
You can subset data frames using row and column indices, similar to matrix indexing.
Subset the first two rows and columns
subset_df <- dff1:2, 1:2]
print(subset_df)
Output:
AB
114
225
4. **Matrix Multiplication**
To perform matrix multiplication, convert the data frame to a matrix and use the “%*% operator.
Create two data frames
dfl <- data.frame(A =c(1, 2), B =¢(3, 4))
df2 <- data.frame(C = ¢(5, 6), D = ¢(7, 8))
Convert to matrices

matl <- as.matrix(dfl)

72

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

mat2 <- as.matrix(df2)
Perform matrix multiplication
result <- matl %*% mat2
print(result)
Output:
CD
[1,]2331
[2,]34 46
5. **Element-wise Operations**

You can perform element-wise operations (e.g., addition, subtraction, multiplication) on data frames,
similar to matrices.

Create two data frames
dfl <- data.frame(A =c(1, 2, 3), B =c(4, 5, 6))
df2 <- data.frame(A = c(7, 8, 9), B = c(10, 11, 12))

Element-wise addition
result <- dfl + df2
print(result)
Output:
A B
1814
21016
31218
6. **Apply Functions to Rows or Columns**
Use the “apply()” function to apply a function to rows or columns of a data frame.
Apply the sum function to columns

col_sums <- apply(df, 2, sum)

Apply the sum function to rows
row_sums <- apply(df, 1, sum)
print(col_sums)

print(row_sums)

Output:

ABC

73
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

6 15 24
[1] 12 15 18

7. **Diagonal Operations**

If your data frame is square (same number of rows and columns), you can extract or modify the
diagonal using the “diag()" function.

Extract the diagonal

diagonal <- diag(as.matrix(df))

print(diagonal)

Output:

[1]159

8. **Using “dplyr” for Matrix-like Operations**

The “dplyr™ package provides a powerful set of tools for manipulating data frames. While not strictly
matrix-like, it allows for similar operations in a more user-friendly way.

Install and load dplyr
install.packages("dplyr")
library(dplyr)

Create a data frame

df <- data.frame(A =c(1, 2, 3), B=c¢(4, 5, 6), C=¢(7, 8, 9))
Calculate row sums using dplyr

df <- df %>% mutate(RowSum = rowSums(.))

print(df)
Output:

A B C RowSum
1147 12
2258 15
3369 18
Summary

- Use "as.matrix()" to convert a data frame to a matrix for matrix-specific operations.

- Perform matrix-like operations (e.g., transposition, row/column sums, matrix multiplication) on data
frames.

- Use “apply()" for applying functions to rows or columns.
- Use “dplyr’ for advanced data frame manipulations.
74

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

These techniques allow to work with data frames in a way that mimics matrix operations while
retaining the flexibility of data frames.

MERGING DATA FRAMES

Merging data frames is a common operation in R, especially when working with datasets that need to
be combined based on shared columns or keys. R provides several functions to merge data frames,
including “merge()’, “dplyr" functions, and “data.table” methods. Below are the most common ways to
merge data frames in R:

1. **Using “merge() ™**

The "merge()” function is a base R function for combining two data frames based on common
columns (keys).

#iHH# **Basic Syntax**
merge(x, Yy, by = "key_column", all = FALSE, all.x = FALSE, all.y = FALSE)

- X', 'y': The data frames to merge.

“by’: The column(s) to merge by (common key).

“all’: If "'TRUE", includes all rows from both data frames (full outer join).

“all.x’: If "TRUE’, includes all rows from "x" (left outer join).

“all.y’: If "'TRUE", includes all rows from "y (right outer join).

Hit#H **Example**

Create two data frames

dfl <- data.frame(ID = c(1, 2, 3), Name = c("Alice", "Bob", "Charlie"))
df2 <- data.frame(ID = ¢(2, 3, 4), Age = ¢(25, 30, 35))

Merge by the "ID" column (inner join by default)

merged_df <- merge(dfl, df2, by ="ID")
print(merged_df)
Output:
ID Name Age
12 Bob 25
2 3 Charlie 30
#i#H **Types of Joins with "merge() **

75

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

- **nner Join**: Only rows with matching keys in both data frames.
merge(dfl, df2, by ="ID")

- **|_eft Join**: All rows from "df1" and matching rows from “df2".
merge(dfl, df2, by = "ID", all.x = TRUE)

- **Right Join**: All rows from "df2" and matching rows from “df1".
merge(dfl, df2, by = "ID", all.y = TRUE)

Full Outer Join: All rows from both data frames.
merge(dfi, df2, by = "ID", all = TRUE)
2. **Using “dplyr” for Merging**

The “dplyr™ package provides a more intuitive and readable way to merge data frames using functions

like “left_join()", “right_join()", “inner_join()", and “full_join()".

Install and Load “dplyr™

install.packages("dplyr")

library(dplyr)

Hit#H **Example**

Create two data frames

dfl <- data.frame(ID = c(1, 2, 3), Name = c("Alice", "Bob", "Charlie"))

df2 <- data.frame(ID = ¢(2, 3, 4), Age = ¢(25, 30, 35))

Left join

left_joined <- left_join(df1, df2, by = "ID")

Right join

right_joined <- right_join(df1, df2, by = "ID")
Inner join

inner_joined <- inner_join(dfl, df2, by ="ID")
Full join

full_joined <- full_join(df1, df2, by ="ID")
print(left_joined)

print(right_joined)

print(inner_joined)
print(full_joined)
Output:

76
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Left Join

ID Name Age
11 Alice NA
22 Bob 25
3 3 Charlie 30
Right Join

ID Name Age
12 Bob 25
2 3 Charlie 30
34 <NA> 35

Inner Join

ID Name Age
12 Bob 25
2 3 Charlie 30
Full Join

ID Name Age
11 Alice NA
22 Bob 25
3 3 Charlie 30
4 4 <NA> 35
3. **Using “data.table” for Merging**
The “data.table” package provides a fast and efficient way to merge data frames.
Install and Load “data.table™
install.packages("data.table")
library(data.table)
Hit#H **Example**

Convert data frames to data.tables

dtl <- as.data.table(df1)

dt2 <- as.data.table(df2)

Merge using data.table syntax

merged_dt <- merge(dtl, dt2, by ="ID", all = TRUE)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

77

print(merged_dt)

Output:
ID Name Age
1: 1 Alice NA
2: 2 Bob 25
3: 3 Charlie 30
4: 4 <NA> 35
4. **Merging on Multiple Columns**

You can merge data frames on multiple columns by passing a vector of column names to the “by
argument.

Hit#H **Example**

Create data frames with multiple keys

dfl <- data.frame(ID = ¢(1, 2, 3), Year = ¢(2021, 2022, 2023), Value = ¢(10, 20, 30))
df2 <- data.frame(ID = c(1, 2, 3), Year = ¢(2021, 2022, 2023), Score = c(100, 200, 300))
Merge on multiple columns

merged_df <- merge(dfl, df2, by = c("ID", "Year"))

print(merged_df)

Output:

ID Year Value Score

112021 10 100

2 22022 20 200

3 32023 30 300

5. **Handling Non-Matching Column Names**

If the key columns have different names in the two data frames, you can use the “by.x™ and “by.y"
arguments in “merge() .

Hit#H **Example**

Create data frames with different key column names

dfl <- data.frame(ID1 = c(1, 2, 3), Name = ¢("Alice", "Bob", "Charlie"))
df2 <- data.frame(ID2 = c(2, 3, 4), Age = ¢(25, 30, 35))

Merge using different key column names

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

78

merged_df <- merge(dfl, df2, by.x ="ID1", by.y = "ID2")
print(merged_df)
Output:
ID1 Name Age
1 2 Bob 25
2 3 Charlie 30
Summary

- Use “merge()" for basic merging operations in base R.

- Use “dplyr functions ("left_join()", ‘right_join()", etc.) for more readable and intuitive merging.

- Use "data.table” for fast and efficient merging, especially with large datasets.

- Merge on multiple columns by passing a vector of column names to the “by" argument.

- Handle non-matching column names using "by.x" and "by.y".

These methods provide flexibility for combining data frames in R, depending on your specific needs.

Applying functions to Data Frames

In R, you can apply functions to DataFrames (which are typically represented as "data.frame’ or
“tibble™ objects) in various ways depending on what you want to achieve. Below are some common
methods for applying functions to DataFrames:

1. **Applying a Function to Each Column or Row**
- ***apply() **: Apply a function to the rows or columns of a DataFrame.
Example: Calculate the mean of each column
df <- data.frame(a = 1:5, b = 6:10, ¢ = 11:15)
apply(df, 2, mean) # 2 means apply to columns
- 1" applies the function to rows.

- "2 applies the function to columns.

- ***sapply() **: Simplifies the result of applying a function to each column.
sapply(df, mean)

- ***lapply()™**: Returns a list after applying a function to each column.
lapply(df, mean)

- ***rowMeans()’, ‘rowSums()", ‘colMeans()", “colSums() **: Specialized functions for
row/column operations.

rowMeans(df)

colSums(df)

79
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

2. **Applying a Function to Subsets of a DataFrame**

- ***tapply() **: Apply a function to subsets of a vector based on a factor.
df <- data.frame(group = c("A", "A", "B", "B"), value = ¢(1, 2, 3, 4))
tapply(df$value, df$group, mean)

- ***aggregate() ™**: Apply a function to subsets of a DataFrame.
aggregate(value ~ group, data = df, mean)

- ***py() **: Apply a function to subsets of a DataFrame.

by(df, df$group, function(x) mean(x$value))

3. **Applying a Function to Each Element**
- ***mapply() **: Apply a function to multiple vectors or lists element-wise.
mapply(function(x, y) x +y, dfa, dfb)
- ***Map() **: Similar to ‘mapply()" but returns a list.

Map(function(x, y) x +y, dfa, dfb)

4. **Using “dplyr” for DataFrame Operations**
The “dplyr” package provides a more intuitive and efficient way to work with DataFrames.
- ***mutate() **: Apply a function to create or modify columns.
library(dplyr)
df <- df %>% mutate(new_col =a + b)
- ***summarize() **: Apply a function to summarize data.
df %>% summarize(mean_a = mean(a), mean_b = mean(b))
- ***group_by()" + “summarize() **: Apply a function to grouped data.
df %>% group_by(group) %>% summarize(mean_value = mean(value))
- ***across() **: Apply a function to multiple columns.
df %>% summarize(across(everything(), mean))
5. **Using “purrr for Functional Programming**

The “purrr’ package provides tools for functional programming.

- ***map()™**: Apply a function to each column.
library(purrr)
map(df, mean)

- ***map_dfr() **: Apply a function and return a DataFrame.

80

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

map_dfr(df, ~ .x * 2)
6. **Custom Functions**
You can define your own functions and apply them to DataFrames.
my_function <- function(x) {
X*2
¥
df <- df %>% mutate(new_col = my_function(a))
Example: Combining Methods
Create a DataFrame
df <- data.frame(a = 1:5, b = 6:10, ¢ = 11:15)
Apply a custom function to each column

df <- df %>% mutate(across(everything(), ~ .x * 2))

Summarize the DataFrame
df %>% summarize(across(everything(), list(mean = mean, sum = sum)))
This will double each value in the DataFrame and then calculate the mean and sum for each column.

These are some of the most common ways to apply functions to DataFrames in R. The choice of
method depends on the specific task and the structure of your data.

Factors and Tables

In R, factors and tables are essential concepts that help in managing categorical data.
1. Factors

Factors in R are used to represent categorical data. They are R's way of handling variables that have a
fixed number of unique values or levels. For example, a "Gender" variable with values "Male" and
"Female" can be represented as a factor. Factors are useful because they store both the values and the
underlying levels, which makes them efficient when working with categorical data.

Creating a Factor

You can create a factor using the factor() function. For example:

r
Copy

gender <- factor(c("Male", "Female", "Female", "Male™))
print(gender)

This creates a factor variable gender with two levels: Male and Female.

81
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Levels of a Factor

You can access the levels of a factor using the levels() function:

r

Copy
levels(gender) # Shows "Male" and "Female"

Changing Factor Levels
You can also modify the levels of a factor:

r

Copy
gender <- factor(c("Male", "Female", "Female", "Male"), levels = ¢c("Male", "Female™))

2. Tables

In R, a table is an object that shows the frequency of each category in a factor or vector. You can
create a table using the table() function. A table is essentially a contingency table, where each element
represents the count of occurrences of a particular level of a factor.

Creating a Table from a Factor
Here’s how you can create a frequency table from a factor:

r

Copy
table(gender)

This will output the number of occurrences of each level of the gender factor:

markdown

Copy
Female Male

2 2
Creating a Table from a Vector

You can also create a table from a general vector, not just a factor:

r
Copy

ages <- ¢(23, 34, 23, 45, 34, 23, 45, 45, 23)
table(ages)

This will display the frequency of each unique age:

Copy
23 34 45
4 2 3

82

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Cross-tabulation (Contingency Table)
You can create a cross-tabulation using two categorical variables (factors):
r

Copy
education <- factor(c("High School", "College", "College", "High School", "College™))

table(gender, education)
This will show how many males and females have each level of education.

Table Summary

You can also summarize a table by using the summary() function:

r

Copy
summary(table(gender))

Example combining both:
r

Copy
Creating factors

gender <- factor(c("Male", "Female", "Female", "Male™))
education <- factor(c(""High School", "College", "College", "High School"))

Create a table (contingency table)
table(gender, education)

This would give a 2x2 table showing the cross-tabulation of gender vs. education.
Key Points:
o Factors store categorical data and represent both the values and their levels.
e Tables summarize the frequency distribution of categorical data, helping in visualizing the

count of occurrences.

Common Functions used with factors in R

When working with factors in R, there are several common functions you can use to manage, analyze,
and modify categorical data. Here's a list of useful functions for factors and what they do:

1. factor()
The primary function to create a factor from a vector or other data type.

r
Copy

Create a factor from a character vector

gender <- factor(c("Male", "Female", "Female", "Male™))

83
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

2. levels()

Returns the levels of a factor, i.e., the distinct categories or values that the factor can take.
r

Copy

levels(gender) # Returns "Male" "Female"

You can also set the levels of a factor using the levels() function:

r

Copy
levels(gender) <- c¢("Male", "Female™)

3. nlevels()

Returns the number of levels in a factor.

r

Copy

nlevels(gender) # Returns 2

4. summary()

Provides a summary of a factor or a table, showing the frequency of each level.
r

Copy

summary(gender)

This will give you the count of each level:

markdown
Copy

Female Male
2 2

5. table()

Creates a frequency table showing the count of each level in a factor or vector.
r

Copy

table(gender)

This will return the count of each category:

markdown

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

84

Copy
Female Male

2 2
You can also use table() to create cross-tabulations (contingency tables) with two or more factors:
r

Copy
education <- factor(c("High School", "College", "College", "High School™))

table(gender, education)
6. as.factor()
Converts an object (such as a character vector or numeric vector) into a factor.

r

age_group <- ¢("Young", "Middle-aged", "Old", "Young", "Middle-aged")
age_factor <- as.factor(age_group)

7. as.character()

Converts a factor back to a character vector.
r

Copy

gender_char <- as.character(gender)

8. relevel()

Changes the reference level of a factor. This is especially useful in statistical modeling when you want
to set a specific reference category.

r

Copy
education <- factor(c(""High School", "College", "College", "High School"))

education <- relevel(education, ref = "College") # Set "College" as the reference level
9. levels<- (assignment operator)

This allows you to directly modify the levels of a factor.

r

Copy
Change levels of a factor

levels(gender) <- c("Male", "Female", "Other")
10. droplevels()

Drops unused levels from a factor. It’s useful when you subset a factor, and there are levels that are no
longer present.

85
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

r

Copy
Remove unused levels from a factor

gender_sub <- gender[gender == "Female"]
gender_sub <- droplevels(gender_sub)

11. contrasts()

Returns or sets the contrasts used in a factor for modeling purposes. This is more relevant for
advanced statistical analysis and modeling.

r

Copy
contrasts(gender) # Show contrasts for the 'gender’ factor

12. levels() vs labels()

o levels() gives the raw level names.
o labels() can be used for labeled factors (especially useful with ordered factors).

r

Copy
Ordered factor example

education_ordered <- factor(c("High School", "College", "Graduate"),
levels = ¢("High School”, "College", "Graduate™),

ordered = TRUE)
levels(education_ordered)

13. ordered()

Creates an ordered factor, which is useful when the categories have a natural ordering (e.g., "Low",
"Medium", "High").

r

Copy

satisfaction <- factor(c("Low", "High", "Medium", "Medium", "High"),
levels = c("Low", "Medium", "High"), ordered = TRUE)

14. addNA()
This function is used to add a NA level to a factor.

r

Copy
gender_with_na <- addNA(gender)

15. factor() with exclude argument
You can use the exclude argument to specify certain levels that should be excluded from the factor.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

86

r

Copy
Exclude a specific value (e.g., "Male") from the factor

gender <- factor(c("Male", "Female”, "Female", "Male™), exclude = "Male™)

Example of Working with Factors
Here’s a practical example that demonstrates how these functions might be used:

r

Copy
Step 1: Create a factor

gender <- factor(c("Male", "Female”, "Female", "Male™))

Step 2: Display levels
print(levels(gender)) # "Male" "Female"

Step 3: Count levels
print(nlevels(gender)) # 2

Step 4: Convert factor to character
gender_char <- as.character(gender)
print(gender_char)

Step 5: Relevel the factor (change reference level)

gender <- relevel(gender, ref = "Female™)
print(gender)

Step 6: Create a frequency table
print(table(gender))

Step 7: Drop unused levels

gender_sub <- gender[gender == "Female"]
gender_sub <- droplevels(gender_sub)
print(gender_sub)

Conclusion

These functions are foundational when working with factors in R. Whether you are preparing data for
statistical modeling or simply summarizing categorical data, knowing how to manipulate and

summarize factors will make your analysis much easier.

Working with tables

In R, tables are a fundamental way to summarize and analyze categorical data. A table is an object
that represents the frequency distribution of a factor or vector. Tables are created using the table()
function, and there are several other functions and methods for manipulating and working with tables.

Here's a guide on how to work with tables in R.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

1. Creating a Table using table()

The table() function creates a table (also called a frequency table or contingency table) by counting
the number of occurrences of each unique value in a vector or factor.

Example 1: Table for a Single Factor

r

Copy

Create a vector with categorical data

gender <- ¢("Male", "Female", "Female", "Male", "Female", "Male")

Create a frequency table
gender_table <- table(gender)
print(gender_table)

Output:

markdown

Copy

gender

Female Male
3 3

This table tells you how many "Female" and "Male" values are in the gender vector.
Example 2: Table for Multiple Factors (Cross-Tabulation)

You can use table() with two or more vectors (factors) to create a cross-tabulation (contingency table).
This shows how the categories of two factors are related.

r
Copy

Create another factor (education)

education <- c("College™, "High School", "College", "High School", "College", "High School™)

Create a cross-tabulation between gender and education
gender_education_table <- table(gender, education)
print(gender_education_table)

Output:
markdown
Copy
education
gender College High School
Female 2 1

Male 1 2
This table shows the count of females and males in each education category.

2. Accessing Elements of a Table

88
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Once atable is created, you can access specific elements or perform operations on it.

Access a specific cell in the table

To access a specific count from a table (e.g., the count of "Female" and "College™), use the []
indexing.

r
Copy

Access the count of "Female" and "College™
gender_education_table["Female", "College™] # Returns 2

Convert a Table to a Data Frame

You can convert a table to a data frame for easier manipulation or to work with other R functions that
require data frames.

r
Copy

Convert the table to a data frame

gender_education_df <- as.data.frame(gender_education_table)
print(gender_education_df)

Output:

nginx

Copy

gender education Freq
1 Female College 2

2 Female High School 1
3 Male College 1

4 Male High School 2

3. Using addmargins()

The addmargins() function is used to add margin totals (row sums and column sums) to the table. This
is useful for getting the total counts for each row and column.

r
Copy

Add margin totals (row sums and column sums)
gender_education_with_margins <- addmargins(gender_education_table)
print(gender_education_with_margins)

Output:

mathematica
Copy

education
gender College High School Sum
Female 2 13
Male 1 2 3
Sum 3 3 6

89

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

4. Using prop.table() for Proportions

The prop.table() function calculates the proportions (relative frequencies) of each cell in the table,
based on the total sum or along the rows/columns.

Example: Proportions across the entire table

r

Copy

Proportions across the entire table

gender_education_proportions <- prop.table(gender_education_table)
print(gender_education_proportions)

Output:

markdown
Copy
education
gender College High School
Female 0.3333333 0.1666667
Male 0.1666667 0.3333333

This shows the proportion of each combination of gender and education category.

Example: Proportions by rows

You can also calculate row-wise proportions by passing the margin = 1 argument to prop.table(),
which normalizes the table by rows.

r
Copy

Proportions by rows

gender_education_row_proportions <- prop.table(gender_education_table, margin = 1)

print(gender_education_row_proportions)
Output:

markdown
Copy
education
gender College High School
Female 0.6666667 0.3333333
Male 0.3333333 0.6666667

This normalizes the table so that the proportions in each row sum to 1.
5. Using ftable() for Flat Tables

The ftable() function can be used to create flat tables (fancy tables) that make it easier to view multi-
dimensional tables in a compact format.

r
Copy

90
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Create a flat table (for better visualization of a multi-dimensional table)
gender_education_flat <- ftable(gender, education)
print(gender_education_flat)

Output:
markdown
Copy
education
gender College High School
Female 2 1

Male 1 2
6. Table Manipulation with dplyr

The dplyr package allows for easy manipulation of tables as well, especially when you convert tables
to data frames.

Example: Using dplyr to summarize a table
r

Copy
library(dplyr)

Convert table to data frame
gender_education_df <- as.data.frame(gender_education_table)

Summarize data using dplyr

gender_education_df %>%
group_by(gender) %>%
summarize(total = sum(Freq))

Output:

csharp

Copy

Atibble: 2 x 2
gender total
<fct> <int>

1 Female 3

2 Male 3

7. Handling Missing Data

If your data has NA values, table() will count them as a separate level. You can handle missing values
by using exclude to remove NA values from the table.

r
Copy

Create a vector with NAs

data_with_na <- c("Male", "Female", "Male", NA, "Female™)

Create a table excluding NAs
table_without_na <- table(data_with_na, exclude = NA)
print(table_without_na)

91
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Output:

markdown

Copy

data_with_na

Female Male
2 2

Summary of Common Table Functions:

table(): Create a frequency or contingency table.

addmargins(): Add margin totals to a table (row/column sums).
prop.table(): Calculate proportions based on the table.

ftable(): Convert a multi-dimensional table into a flat, easy-to-read format.
as.data.frame(): Convert a table into a data frame for further manipulation.

o summary(): Provides a summary of the table.
o exclude in table(): Exclude NA values or specific values from a table.

Conclusion:

Tables are a powerful tool in R for summarizing categorical data. They allow you to easily calculate
frequencies, proportions, and cross-tabulations. By using functions like table(), addmargins(), and
prop.table(), you can explore your data and gain meaningful insights.

Other factors and table related functions

In R, tables and factors are essential for data manipulation and statistical analysis. Here's an overview
of some common functions related to factors and tables, as well as other operations you might use:

Factorsin R

Factors are used to represent categorical variables. They store both the values of a categorical variable
and the set of possible levels.

Key functions for working with factors:
1. factor(): Creates a factor from a vector.
R

Copy
x <-c("low", "medium", "high", "medium")
f <- factor(x)

print(f)
2. levels(): Returns or sets the levels of a factor.

R

Copy
levels(f)

92
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

3. table(): Creates a frequency table of a factor or vector.

R
Copy

table(f)
4. as.factor(): Coerces a vector into a factor.

R

Copy
x <-¢("red", "blue", "blue", "green")
f <- as.factor(x)

5. nlevels(): Returns the number of levels of a factor.
R

Copy
nlevels(f)

6. relevel(): Reorders the levels of a factor, making the specified level the reference.

R
Copy

f <- relevel(f, ref = "high")
7. levels<-: Modify the levels of a factor.
R
Copy
levels(f) <- c("low", "medium", "high™)
8. ordered(): Converts a factor into an ordered factor.
R

Copy
f_ordered <- factor(x, ordered = TRUE, levels = ¢("low", "medium", "high™))

Working with Tables in R

Tables are a great way to summarize categorical data, especially with the table() function.

Key table functions:

table(): Creates a contingency table from a vector, matrix, or data frame.

R
Copy

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

93

data <- c("apple”, "banana”, "apple", "banana”, "orange")
table(data)

addmargins(): Adds margin sums (like row and column totals) to a table.
R

Copy

tab <- table(c("A", "A", "B", "B", "C"))

addmargins(tab)

prop.table(): Converts a table to proportions (relative frequencies).

R

Copy
prop.table(table(data))

ftable(): Creates a flat contingency table (more readable than multi-dimensional arrays).

R

Copy
ftable(mtcars$mpg, mtcars$cyl)

table() with useNA parameter: Can be used to include or exclude missing values (NA).

R

Copy
data <- c("apple”, "banana”, NA, "orange", "banana™, NA)

table(data, useNA = "ifany")

Other Useful Table-Related Functions

1.

3.

xtabs(): Creates contingency tables from a formula and data frame.

R

Copy

data(mtcars)

xtabs(~ cyl + gear, data = mtcars)

dplyr::count(): A dplyr function that counts occurrences of distinct combinations of factor
levels.

R

Copy
library(dplyr)
count(mtcars, cyl, gear)

summary(): Provides a summary for factors, vectors, and tables.

94

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

R

Copy
summary(f)

summary(mtcars)
aggregate(): Computes summary statistics by group.

R

Copy
aggregate(mpg ~ cyl, data = mtcars, FUN = mean)

melt() and dcast() from the reshape2 package: Used to reshape data (wide to long format
and vice versa).

R

Copy

library(reshape2)

molten_data <- melt(mtcars)
dcast(molten_data, variable ~ value)

Example: Analyzing Categorical Data with Tables

Let’s say you have the following data about fruit preference among a group of people:

R

Copy

Example data
fruit <- c("apple"”, "banana”, "orange", "banana"”, "apple", "apple™)

1.

3.

Create a table of counts:

R
Copy
fruit_table <- table(fruit)

print(fruit_table)
Proportions:
R

Copy
prop.table(fruit_table)

Add margins (totals):
R

Copy
addmargins(fruit_table)

Conclusion

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

95

These functions allow for flexible handling of categorical data and summarization in R.
Understanding and manipulating factors and tables effectively helps in preparing data for analysis,
performing statistical tests, and interpreting results.

CONTROL STATEMENTS

In R, control statements are used to control the flow of execution based on certain conditions. The
basic control structures in R are if, else, ifelse, for, while, and repeat loops. These structures allow you
to make decisions and repeat actions in your programs.

Here’s an overview of key control statements in R:
1. if Statement
The if statement allows you to execute code only when a condition is true.

R

Copy
x<-10
if (x>5){
print("x is greater than 5")

In this example, the code inside the if block will execute because x > 5.
2. else Statement
The else statement follows an if and is executed when the if condition is false.

R

Copy
x<-3
if (x>5){
print("x is greater than 5")

Yelse {

print(X is not greater than 5")

¥

Here, the code inside the else block runs because x is not greater than 5.

3. else if Statement

96

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

If you have multiple conditions to check, you can chain else if statements after an initial if. Only one
block will execute based on the conditions.

R

Copy
X<-7
if (x>10){
print("x is greater than 10")
Yelseif (x>5) {
print("'x is greater than 5 but less than or equal to 10")

}else {

print("x is less than or equal to 5™)

}

In this case, the else if condition is true, so it prints "X is greater than 5 but less than or equal to 10".
4. ifelse() Function

The ifelse() function is a vectorized version of the if statement. It is used to test a condition and
returns one value if true, another value if false.

R

Copy

x<-10

result <- ifelse(x > 5, "Greater than 5", "Less than or equal to 5")
print(result)

This will return "Greater than 5" because X is greater than 5.

5. for Loop
The for loop is used to iterate over a sequence (such as a vector, list, or range of numbers).

R

Copy

for (iin 1:5) {
print(paste(*lteration”, i))

}

This loop prints the statement "lteration 1", "Iteration 2", and so on, until i reaches 5.

6. while Loop

The while loop continues to execute as long as a condition is TRUE. Be careful not to create infinite
loops!

R

97

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Copy

x<-1

while (x <=5) {
print(paste(*x is", x))

X<-x+1

¥

This will print values of x from 1 to 5.
7. repeat Loop

The repeat loop is similar to a while loop but does not evaluate the condition until the end of each
iteration. It is typically used with a break statement to stop the loop.

R

Copy
x<-1
repeat {
print(paste(*'x is", X))
X<-x+1
if (x>5){
break
}
}

This will print values of x from 1 to 5, and the loop stops once x exceeds 5 due to the break statement.
8. break Statement

The break statement is used to exit a loop prematurely, usually when a certain condition is met.

R
Copy
for (iin 1:10) {

if (i==6){
break

}
print(i)
}

This will print numbers from 1 to 5 and then break out of the loop when i is 6.
9. next Statement
The next statement is used to skip the current iteration of a loop and move on to the next one.

R

98

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

Copy
for (iin 1:5) {

if (i==3){

next

}
print(i)

This will print 1, 2, 4, and 5, skipping the iteration where i is 3.

Example: Combining Control Statements Here’s an example that combines several control
statements:

R

Copy
X <-10

Using if-else to check a condition
if (x>5){
print("'x is greater than 5")

Using a for loop to print numbers

for (iin 1:3) {
print(i)

Break if i equals 2
if(i==2){
break
}
}
}else {

print("x is less than or equal to 5")

}

In this example, the program checks if X > 5, prints numbers using a for loop, and breaks out of the
loop when i is 2.

Summary of Control Structures:

if: Conditionally execute a block of code.

else: Execute code when the if condition is false.

else if: Chain multiple conditions.

ifelse(): Vectorized if-else logic.

for loop: Iterate over a sequence.

while loop: Loop while a condition is true.

repeat loop: Loop until manually interrupted with break.

break: Exit a loop.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

99

e next: Skip to the next iteration in a loop.These control structures help to make your R
programs flexible and dynamic.

UNIT IV: Classes in R

S3 Classes — S4 Classes — Managing your objects — Input/output — accessing keyboard and
monitor — reading and writing files — accessing the internet — String Manipulation — Graphics
— Creating Graphs— Customizing Graphs — Saving Graphs to files — Creating Three-
Dimensional plots

This unit focuses on the concept of classes, object management, input and output handling,
string manipulation, graphics, and plotting in R. R is not just a statistical computing tool;
it is also a functional and object-oriented programming language. Understanding classes
and data structures is key to organizing and managing code efficiently.

S3 CLASSES

S3 classes are the simplest and most common form of object-oriented system in R. They provide
a flexible way to define how functions behave for different kinds of objects. S3 is

an informal class system that relies on naming conventions rather than formal definitions.

Defining S3 Classes:
An S3 object is typically created by assigning a class attribute to a list or vector.
For example:

person <- list(name="John", age=25)

class(person) <- "Person”

In this example, an object “person” is given a class called “Person”. Methods can then be
defined to behave differently for objects of class “Person”.

Creating Methods for S3:
S3 methods are functions that end with the class name.
For example, to define a print method for the “Person” class:
print.Person <- function(x) {
cat("Name:", x$name, "
Age:", x$age, "
")
}

When print(person) is called, R automatically looks for a function named print.Person().

Advantages of S3 Classes:

- Simple and easy to use.

- Flexible: no need for formal definitions.

- Works well for small projects or prototypes.

Limitations:
- No strict structure enforcement.
- Errors can occur if conventions are not followed.

100
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

S4 CLASSES

S4 classes were introduced to add more formalism and reliability to object-oriented
programming in R. Unlike S3, S4 classes require explicit class and method definitions.

Defining S4 Classes:
S4 classes are created using setClass():
setClass(""Person", slots = list(hame="character", age="numeric"))

Creating Objects:
pl <- new("Person", name="John", age=25)

Accessing Slots:
Slots in an S4 object can be accessed using the @ operator:
pl@name

Defining Methods for S4:
Methods are defined using setMethod():
setMethod(""show", "Person", function(object) {
cat("Name:", object@name, "
Age:", object@age, "
")
by,

Advantages of S4 Classes:

- Enforces structure and type safety.

- Methods are clearly defined.

- Suitable for large and complex applications.

Limitations:
- More verbose and complex than S3.

MANAGING OBJECTS
Obijects are central to R programming. They store data and functions. The environment
stores all objects currently in use.

Key Functions:

- Is(): Lists all objects in the current environment.

- rm(): Removes objects.

- exists(): Checks if an object exists.

- assign(): Assigns values to variable hames dynamically.
- get(): Retrieves objects by name.

Example:
x<-10

101
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

assign("y", 20)
Is()

rm(x)

INPUT AND OUTPUT

Input and output operations are essential for interacting with users and external data.

Reading Input from Keyboard:
The readline() function allows user input:
name <- readline(prompt="Enter your name: ")

Writing Output to Monitor:
The cat() and print() functions display information on screen:
cat("Welcome", name)

READING AND WRITING FILES
R provides functions to read and write data from text, CSV, and other files.

Common Functions:
- read.table(), read.csv() — for reading data.
- write.table(), write.csv() — for writing data.

Example:
data <- read.csv("data.csv')
write.csv(data, "output.csv')

ACCESSING THE INTERNET
R can interact with web resources using packages like httr or RCurl.

Example:
library(httr)
response <- GET("https://example.com")
content <- content(response, "text")

STRING MANIPULATION
Strings are sequences of characters used for text data.

Common Functions:

- nchar(): Number of characters.
- substr(): Extract part of a string.
- paste(): Combine strings.

- strsplit(): Split strings.

Example:
s <- "Data Science with R"
substr(s, 1, 4)

GRAPHICSINR

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

102

R is known for its powerful graphical capabilities. The base graphics system allows
creating a variety of plots.

Creating Graphs:
x <-1:10
y <- x"2
plot(x, y, main="Simple Plot", xlab="X", ylab="Y")

CUSTOMIZING GRAPHS
Customization allows better visualization of data.

Options include:

- main: Title of the graph.

- xlab, ylab: Axis labels.

- col: Color of points or lines.

- type: Type of plot (p for points, | for lines).

Example:
plot(x, y, type="b", col="blue", main="Customized Plot")

SAVING GRAPHS TO FILES
Graphs can be saved to various file formats.

Example:

png(“graph.png”)
plot(x, y)

dev.off()

Other formats include pdf(), jpeg(), and tiff().

CREATING THREE-DIMENSIONAL PLOTS
3D plots help visualize multivariate data. Packages like plotly or rgl are used.

Example using plotly:
library(plotly)
plot_ly(x=~x, y=~y, z=~(x+Y), type="scatter3d", mode="markers")

3D plots provide interactive visualization that enhances data understanding.

CONCLUSION

This unit explained how R handles object-oriented programming with S3 and S4 classes,

along with object management, input/output operations, file handling, internet access,

string manipulation, and graphics. Mastering these concepts helps in developing structured,

interactive, and visually appealing R programs.

UNIT V: Modelling in R

Interfacing R to other languages — Parallel R — Basic Statistics — Linear Model — Generalized
Linear models — Non-linear Models — Time Series and Auto-Correlation — Clustering.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

This unit focuses on different modeling techniques in R. It explores how R connects
to other languages, performs parallel computation, and applies statistical and
predictive models such as linear, generalized linear, and non-linear models.
Additionally, it explains time series analysis, auto-correlation, and clustering methods.

INTERFACING R TO OTHER LANGUAGES

R is highly flexible and can interface with other programming languages such as C,
C++, Java, and Python. This feature allows R programmers to extend its capabilities
and improve performance when handling complex or time-consuming computations.

Interfacing with C/C++:
R provides .C() and .Call() functions to call C routines from R code. This enables
developers to write performance-intensive tasks in C/C++ and integrate them with R.

Example:
result <- .C("myCFunction", as.integer(x), as.double(y))

Rcpp package simplifies this process by allowing C++ functions to be written and called
directly in R without complex syntax.

Interfacing with Python:
The reticulate package provides a bridge between R and Python. It allows R users
to import Python modules, run Python scripts, and exchange data between the two languages.

Example:
library(reticulate)
py_run_string("print('Hello from Python!")")

Advantages:
- Reuse existing code written in other languages

- Improve performance for computationally heavy tasks.
- Integrate different programming environments.

PARALLEL R
Parallel computing allows R to execute multiple operations simultaneously, reducing
execution time for large datasets or intensive computations.

Base R provides parallel capabilities through the 'parallel’ package. It includes
functions such as mclapply(), parLapply(), and clusterApply().

Example:
library(parallel)
cl <- makeCluster(4)
parLapply(cl, 1:10, function(x) x"2)

104
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

stopCluster(cl)

The foreach and doParallel packages also support parallel loops, allowing tasks to
run concurrently on multiple cores or machines.

Benefits of Parallel R:

- Improved computational efficiency.

- Handles large-scale data analysis.

- Utilizes multi-core processors effectively.

BASIC STATISTICS INR
R is primarily a statistical computing environment. It offers tools for descriptive
and inferential statistics, hypothesis testing, and data summarization.

Common Statistical Functions:

- mean(), median(), mode() — measures of central tendency.
- var(), sd(), range() — measures of dispersion.

- cor(), cov() — relationships between variables.

Example:
x <- ¢(5, 10, 15, 20)
mean(X)
sd(x)
cor(x, x"2)

Hypothesis Testing:
R supports various statistical tests such as t-test, chi-square test, and ANOVA.

Example:
t.test(X, y)
chisq.test(table(data$group, data$outcome))

LINEAR MODEL
A linear model describes a relationship between a dependent variable and one or
moreindependent variables using a straight-line equation.

The Im() function in R is used to fit linear models.

Example:
model <- Im(y ~ x1 + x2, data=dataframe)
summary(maodel)

Interpretation:

- Coefficients represent the effect of predictors.

- The R-squared value indicates model fit.

- Residuals show differences between observed and predicted values.

Advantages:
- Simple and interpretable.
- Useful for prediction and trend analysis.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

105

GENERALIZED LINEAR MODELS (GLM)
GLMs extend linear models by allowing response variables to have error distributions

other than normal. Common GLMs include logistic regression and Poisson regression.

Example of Logistic Regression:
glm_model <- gim(y ~ x1 + x2, family=binomial, data=dataframe)
summary(glm_model)

Example of Poisson Regression:
glm_poisson <- glm(count ~ x1 + x2, family=poisson, data=dataframe)

Components of GLM:

- Random component: Specifies the probability distribution.

- Systematic component: Defines predictors.

- Link function: Connects the linear predictor and mean of the distribution.

Advantages:
- Handles binary, count, and non-normal data.
- Flexible and widely applicable in real-world modeling.

NON-LINEAR MODELS

Non-linear models are used when the relationship between variables cannot be
represented by a straight line. R provides the nls() function for fitting
non-linear models.

Example:
model <- nls(y ~ a * exp(b * x), data=dataframe, start=list(a=1, b=0.1))

Features:
- Captures complex relationships.
- Useful in growth curves, enzyme kinetics, and population studies.

Challenges:
- Requires good starting values.

- Can converge slowly or fail with poor initialization.

TIME SERIES AND AUTO-CORRELATION
A time series is a sequence of data points recorded at successive time intervals.
R provides powerful tools for analyzing and forecasting time series data.

Creating a Time Series Object:
ts_data <- ts(data, start=c(2020,1), frequency=12)

Plotting and Analyzing:
plot(ts_data)

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

106

Decomposition:
Time series can be decomposed into trend, seasonal, and irregular components using
the decompose() function.

Auto-correlation:
Auto-correlation measures how observations relate to past values in the series.

Example:
acf(ts_data)
pacf(ts_data)

Forecasting Models:
- ARIMA (Auto-Regressive Integrated Moving Average)
- Exponential Smoothing

Example:
library(forecast)
fit <- auto.arima(ts_data)
forecast(fit, h=12)

Advantages of Time Series Modeling:
- Identifies trends and seasonal patterns.
- Useful for forecasting and prediction.

CLUSTERING
Clustering is an unsupervised learning technique that groups similar observations
based on their characteristics. It helps identify natural groupings in data.

Common Clustering Methods:

1. K-Means Clustering

2. Hierarchical Clustering

3. DBSCAN (Density-Based Clustering)

Example (K-Means):
set.seed(123)
data <- matrix(rnorm(100), ncol=2)
kmeans_result <- kmeans(data, centers=3)
plot(data, col=kmeans_result$cluster)

Hierarchical Clustering:
dist_matrix <- dist(data)
hc <- hclust(dist_matrix, method="complete")
plot(hc)

Evaluation of Clustering:
- Within-cluster sum of squares (WSS)
- Silhouette score

Applications:
- Market segmentation
- Image recognition

107
Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

- Bioinformatics

CONCLUSION

Modeling in R is a cornerstone of data analysis and predictive analytics. From
statistical summaries to complex machine learning models, R provides a wide range
of tools for modeling, forecasting, and pattern recognition. Understanding how to
interface R with other languages, use parallel computation, and apply linear,
generalized, and non-linear models allows analysts to build efficient and scalable
data-driven solutions. Time series analysis and clustering further enhance the
ability to understand data trends and relationships effectively.

Ms.M.BALAMONICA M.Sc
ASSISTANT PROFESSOR

108

