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Introducing to R: 

The R Language stands out as a powerful tool in the modern era of statistical computing and data 

analysis. Widely embraced by statisticians, data scientists, and researchers, the R Language offers an 

extensive suite of packages and libraries tailored for data manipulation, statistical modeling, and 

visualization. In this article, we explore the features, benefits, and applications of the R Programming 

Language, shedding light on why it has become an indispensable asset for data-driven professionals 

across various industries. 

R programming language is an implementation of the S programming language. It also combines with 

lexical scoping semantics inspired by Scheme. Moreover, the project was conceived in 1992, with an 

initial version released in 1995 and a stable beta version in 2000. 

 

 

 

What is R Programming Language? 

R programming is a leading tool for machine learning, statistics, and data analysis, allowing for the 

easy creation of objects, functions, and packages. Designed by Ross Ihaka and Robert Gentleman at 

the University of Auckland and developed by the R Development Core Team, R Language is 

platform-independent and open-source, making it accessible for use across all  
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operating systems without licensing costs. Beyond its capabilities as a statistical package, R integrates 

with other languages like C and C++, facilitating interaction with various data sources and statistical 

tools. With a growing community of users and high demand in the Data Science job market, R is one 

of the most sought-after programming languages today. Originating as an implementation of the S 

programming language with influences from Scheme, R has evolved since its conception in 1992, 

with its first stable beta version released in 2000. 

Why Use R Language? 

The R Language is a powerful tool widely used for data analysis, statistical computing, and machine 

learning. Here are several reasons why professionals across various fields prefer R: 

 

 

 

 

1. Comprehensive Statistical Analysis: 

 R language is specifically designed for statistical analysis and provides a vast array of statistical 

techniques and tests, making it ideal for data-driven research. 

2. Extensive Packages and Libraries: 

 The R Language boasts a rich ecosystem of packages and libraries that extend its capabilities, 

allowing users to perform advanced data manipulation, visualization, and machine learning tasks 

with ease. 

3. Strong Data Visualization Capabilities: 

 R language excels in data visualization, offering powerful tools like ggplot2 and plotly, which 

enable the creation of detailed and aesthetically pleasing graphs and plots. 

4. Open Source and Free: 

 As an open-source language, R is free to use, which makes it accessible to everyone, from 

individual researchers to large organizations, without the need for costly licenses. 

5. Platform Independence: 

 The R Language is platform-independent, meaning it can run on various operating systems, 

including Windows, macOS, and Linux, providing flexibility in development environments. 

6. Integration with Other Languages: 

 R can easily integrate with other programming languages such as C, C++, Python, and Java, 

allowing for seamless interaction with different data sources and statistical packages. 

7. Growing Community and Support: 

 R language has a large and active community of users and developers who contribute to its 

continuous improvement and provide extensive support through forums, mailing lists, and online 

resources. 

8. High Demand in Data Science: 

 R is one of the most requested programming languages in the Data Science job market, making 

it a valuable skill for professionals looking to advance their careers in this field. 

Features of R Programming Language 

The R Language is renowned for its extensive features that make it a powerful tool for data analysis, 

statistical computing, and visualization. Here are some of the key features of R: 

1. Comprehensive Statistical Analysis: 

 R langauge provides a wide array of statistical techniques, including linear and nonlinear 

modeling, classical statistical tests, time-series analysis, classification, and clustering. 

2. Advanced Data Visualization: 

 With packages like ggplot2, plotly, and lattice, R excels at creating complex and aesthetically 

pleasing data visualizations, including plots, graphs, and charts. 

3. Extensive Packages and Libraries: 

 The Comprehensive R Archive Network (CRAN) hosts thousands of packages that extend R’s 

capabilities in areas such as machine learning, data manipulation, bioinformatics, and more. 

4. Open Source and Free: 

 R is free to download and use, making it accessible to everyone. Its open-source nature 

encourages community contributions and continuous improvement. 
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5. Platform Independence: 

 R is platform-independent, running on various operating systems, including Windows, macOS, 

and Linux, which ensures flexibility and ease of use across different environments. 

6. Integration with Other Languages: 

 R language can integrate with other programming languages such as C, C++, Python, Java, and 

SQL, allowing for seamless interaction with various data sources and computational processes. 

7. Powerful Data Handling and Storage: 

 R efficiently handles and stores data, supporting various data types and structures, including 

vectors, matrices, data frames, and lists. 

8. Robust Community and Support: 

 R has a vibrant and active community that provides extensive support through forums, mailing 

lists, and online resources, contributing to its rich ecosystem of packages and documentation. 

 

9. Interactive Development Environment (IDE): 

 RStudio, the most popular IDE for R, offers a user-friendly interface with features like syntax 

highlighting, code completion, and integrated tools for plotting, history, and debugging. 

 

10. Reproducible Research: 

 

R supports reproducible research practices with tools like R Markdown and Knitr, enabling users to 

create dynamic reports, presentations, and documents that combine code, text, and visualizations. 

 

Advantages of R language 

 R is the most comprehensive statistical analysis package. As new technology and concepts often 

appear first in R. 

 As R programming language is an open source. Thus, you can run R anywhere and at any time. 

 R programming language is suitable for GNU/Linux and Windows operating systems. 

 R programming is cross-platform and runs on any operating system. 

 In R, everyone is welcome to provide new packages, bug fixes, and code enhancements. 

Disadvantages of R language 

 In the R programming language, the standard of some packages is less than perfect. 

 Although, R commands give little pressure on memory management. So R programming 

language may consume all available memory. 

 In R basically, nobody to complain if something doesn’t work. 

 R programming language is much slower than other programming languages such as Python and 

MATLAB. 

Applications of R language 

 We use R for Data Science. It gives us a broad variety of libraries related to statistics. It also 

provides the environment for statistical computing and design. 

 R is used by many quantitative analysts as its programming tool. Thus, it helps in data importing 

and cleaning. 

 R is the most prevalent language. So many data analysts and research programmers use it. Hence, 

it is used as a fundamental tool for finance. 

 Tech giants like Google, Facebook, Bing, Twitter, Accenture, Wipro, and many more using R 

nowadays. 

 

Data Structures in R Programming 

A data structure is a particular way of organizing data in a computer so that it can be used effectively. 

The idea is to reduce the space and time complexities of different tasks. Data structures in R 

programming are tools for holding multiple values.  

R’s base data structures are often organized by their dimensionality (1D, 2D, or nD) and whether 

they’re homogeneous (all elements must be of the identical type) or heterogeneous (the elements are 

often of various types). This gives rise to the six data types which are most frequently utilized in data 

analysis. 
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The most essential data structures used in R include:  

 Vectors 

 Lists 

 Dataframes 

 Matrices 

 Arrays 

 Factors 

 Tibbles 

Vectors 

A vector is an ordered collection of basic data types of a given length. The only key thing here is all 

the elements of a vector must be of the identical data type e.g homogeneous data structures. Vectors 

are one-dimensional data structures. 

 

 

 

Example:   

R 

# R program to illustrate Vector 

 

# Vectors(ordered collection of same data type) 

X = c(1, 3, 5, 7, 8) 

 

 

 

# Printing those elements in console         

print(X) 

 

Output:  

[1] 1 3 5 7 8 

Lists 

A list is a generic object consisting of an ordered collection of objects. Lists are heterogeneous data 

structures. These are also one-dimensional data structures. A list can be a list of vectors, list of 

matrices, a list of characters and a list of functions and so on. 

Example:   

R 

# R program to illustrate a List 

 

# The first attributes is a numeric vector 

# containing the employee IDs which is  

# created using the 'c' command here 

empId = c(1, 2, 3, 4) 

 

# The second attribute is the employee name  

# which is created using this line of code here 

# which is the character vector  

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

 

# The third attribute is the number of employees 

# which is a single numeric variable. 

numberOfEmp = 4 

 

# We can combine all these three different 

# data types into a list 

https://www.geeksforgeeks.org/data-structures-in-r-programming/#vectors
https://www.geeksforgeeks.org/data-structures-in-r-programming/#lists
https://www.geeksforgeeks.org/data-structures-in-r-programming/#dataframes
https://www.geeksforgeeks.org/data-structures-in-r-programming/#matrices
https://www.geeksforgeeks.org/data-structures-in-r-programming/#arrays
https://www.geeksforgeeks.org/data-structures-in-r-programming/#factors
https://www.geeksforgeeks.org/data-structures-in-r-programming/#tibbles
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# containing the details of employees 

# which can be done using a list command 

empList = list(empId, empName, numberOfEmp) 

 

print(empList) 

Output:  

[[1]] 

[1] 1 2 3 4 

 

[[2]] 

[1] "Debi"    "Sandeep" "Subham"  "Shiba"   

 

[[3]] 

[1] 4 

Dataframes 

Dataframes are generic data objects of R which are used to store the tabular data. Dataframes are the 

foremost popular data objects in R programming because we are comfortable in seeing the data within 

the tabular form. They are two-dimensional, heterogeneous data structures. These are lists of vectors 

of equal lengths.  

Data frames have the following constraints placed upon them:  

 A data-frame must have column names and every row should have a unique name. 

 Each column must have the identical number of items. 

 Each item in a single column must be of the same data type. 

 Different columns may have different data types. 

To create a data frame we use the data.frame() function. 

Example:   

R 

# R program to illustrate dataframe 

 

# A vector which is a character vector 

 

Name = c("Amiya", "Raj", "Asish") 

 

 

# A vector which is a character vector 

Language = c("R", "Python", "Java") 

 

# A vector which is a numeric vector 

Age = c(22, 25, 45) 

 

# To create dataframe use data.frame command 

# and then pass each of the vectors  

# we have created as arguments 

# to the function data.frame() 

df = data.frame(Name, Language, Age) 

 

print(df) 

 

 

Output:  

   Name  Language  Age 

1 Amiya        R                    22 

2 Raj    Python                    25 

3 Asish     Java                         45 
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Matrices 

A matrix is a rectangular arrangement of numbers in rows and columns. In a matrix, as we know rows 

are the ones that run horizontally and columns are the ones that run vertically. Matrices are two-

dimensional, homogeneous data structures. 

Now, let’s see how to create a matrix in R. To create a matrix in R you need to use the function called 

matrix. The arguments to this matrix() are the set of elements in the vector. You have to pass how 

many numbers of rows and how many numbers of columns you want to have in your matrix and this 

is the important point you have to remember that by default, matrices are in column-wise order.  

Example:   

R 

# R program to illustrate a matrix 

 

A = matrix( 

    # Taking sequence of elements 

    c(1, 2, 3, 4, 5, 6, 7, 8, 9),  

     

    # No of rows and columns 

    nrow = 3, ncol = 3,   

 

    # By default matrices are  

    # in column-wise order  

    # So this parameter decides 

    # how to arrange the matrix           

    byrow = TRUE                              

) 

 

print(A) 

 

 

 

 

Output:  

     [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    4    5    6 

[3,]    7    8    9 

Arrays 

 

 

 

Arrays are the R data objects which store the data in more than two dimensions. Arrays are n-

dimensional data structures. For example, if we create an array of dimensions (2, 3, 3) then it creates 

3 rectangular matrices each with 2 rows and 3 columns. They are homogeneous data structures. 

 

 

Now, let’s see how to create arrays in R. To create an array in R you need to use the function called 

array(). The arguments to this array() are the set of elements in vectors and you have to pass a vector 

containing the dimensions of the array.  

Example:   

Python3 

# R program to illustrate an array 

 

A = array( 

    # Taking sequence of elements 



 
8 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

    c(1, 2, 3, 4, 5, 6, 7, 8), 

 

    # Creating two rectangular matrices  

    # each with two rows and two columns 

    dim = c(2, 2, 2)                         

) 

 

print(A) 

Output:  

, , 1 

 

     [,1][,2] 

[1,]    1     3 

[2,]    2     4 

 

, ,  2 

 

     [,1][,2] 

[1 ]   5    7 

[2,]   6    8 

 

Factors 

Factors are the data objects which are used to categorize the data and store it as levels. They are useful 

for storing categorical data. They can store both strings and integers. They are useful to categorize 

unique values in columns like “TRUE” or “FALSE”, or “MALE” or “FEMALE”, etc.. They are useful 

in data analysis for statistical modeling. 

Now, let’s see how to create factors in R. To create a factor in R you need to use the function called 

factor(). The argument to this factor() is the vector.  

Example:   

R 

# R program to illustrate factors 

 

# Creating factor using factor() 

fac = factor(c("Male", "Female", "Male", 

               "Male", "Female", "Male", "Female")) 

 

print(fac) 

Output:  

[1] Male   Female Male   Male   Female Male   Female 

Levels: Female Male 

Tibbles 

Tibbles are an enhanced version of data frames in R, part of the tidyverse. They offer improved 

printing, stricter column types, consistent subsetting behavior, and allow variables to be referred to 

as objects. Tibbles provide a modern, user-friendly approach to tabular data in R. 

 

 

Now, let’s see how we can create a tibble in R. To create tibbles in R we can use the tibble function 

from the tibble package, which is part of the tidyverse. 

Example: 
R 

# Load the tibble package 

library(tibble) 

 

 

https://www.geeksforgeeks.org/tibbles-dataframe/
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# Create a tibble with three columns: name, age, and city 

my_data <- tibble( 

  name = c("Sandeep", "Amit", "Aman"), 

  age = c(25, 30, 35), 

  city = c("Pune", "Jaipur", "Delhi") 

) 

# Print the tibble 

print(my_data) 

Output: 
  Name age     city 

  <chr><dbl><chr>  

1Sandeep  25    Pune 

2Amit       30     Jaipur 

3 Aman     35          Delhi 
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Vectors 
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R Vectors are the same as the arrays in R language which are used to hold multiple data values of 

the same type. One major key point is that in R Programming Language the indexing of the vector 

will start from ‘1’ and not from ‘0’. We can create numeric vectors and character vectors as well.  

 

R – Vector 

Creating a vector 

A vector is a basic data structure that represents a one-dimensional array. to create a array we use 

the “c” function which the most common method use in R Programming Language. 

 R 

# R program to create Vectors 

  

# we can use the c function 

# to combine the values as a vector. 

# By default the type will be double 

X<- c(61, 4, 21, 67, 89, 2) 

cat('using c function', X, '\n') 

  

# seq() function for creating 

# a sequence of continuous values. 

https://www.geeksforgeeks.org/r-array/
https://www.geeksforgeeks.org/r-programming-language-introduction/
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# length.out defines the length of vector. 

Y<- seq(1, 10, length.out = 5)  

cat('using seq() function', Y, '\n')  

# use':' to create a vector  

# of continuous values. 

Z<- 2:7 

cat('using colon', Z) 

Output: 
using c function 61 4 21 67 89 2   

using seq() function 1 3.25 5.5 7.75 10   

using colon 2 3 4 5 6 7 

Types of R vectors 

Vectors are of different types which are used in R. Following are some of the types of vectors: 

Numeric vectors 

Numeric vectors are those which contain numeric values such as integer, float, etc.  

 R 

# R program to create numeric Vectors 

# creation of vectors using c() function. 

v1<- c(4, 5, 6, 7) 

# display type of vector 

typeof(v1) 

# by using 'L' we can specify that we want integer values. 

v2<- c(1L, 4L, 2L, 5L)  

# display type of vector 
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typeof(v2) 

Output: 
[1] "double" 

[1] "integer" 

 

 

 

 

 

Character vectors 

Character vectors in R contain alphanumeric values and special characters.  

 R 

# R program to create Character Vectors 

# by default numeric values  

# are converted into characters 

v1<- c('geeks', '2', 'hello', 57)  

# Displaying type of vector 

typeof(v1) 

Output: 
[1] "character" 

Logical vectors 

Logical vectors in R contain Boolean values such as TRUE, FALSE and NA for Null values.  

 R 

# R program to create Logical Vectors 

# Creating logical vector 

# using c() function 

v1<- c(TRUE, FALSE, TRUE, NA) 
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# Displaying type of vector 

typeof(v1) 

Output: 
[1] "logical" 

Length of R vector 

In R, the length of a vector is determined by the number of elements it contains. we can use 

the length() function to retrieve the length of a vector. 

 

# Create a numeric vector 

x <- c(1, 2, 3, 4, 5) 

# Find the length of the vector 

length(x) 

# Create a character vector 

y <- c("apple", "banana", "cherry") 

# Find the length of the vector 

length(y) 

# Create a logical vector 

z <- c(TRUE, FALSE, TRUE, TRUE) 

# Find the length of the vector 

length(z) 

 

 

Output: 
> length(x) 

[1] 5 

 

> length(y) 

[1] 3 
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> length(z) 

[1] 4 

 

Accessing R vector elements 

Accessing elements in a vector is the process of performing operation on an individual element of a 

vector. There are many ways through which we can access the elements of the vector. The most 

common is using the ‘[]’, symbol. 

Note: Vectors in R are 1 based indexing unlike the normal C, python, etc format. 

 

 

# R program to access elements of a Vector 

  

# accessing elements with an index number. 

X<- c(2, 5, 18, 1, 12) 

cat('Using Subscript operator', X[2], '\n') 

  

# by passing a range of values 

# inside the vector index. 

Y<- c(4, 8, 2, 1, 17) 

cat('Using combine() function', Y[c(4, 1)], '\n') 

Output: 
Using Subscript operator 5  

Using combine() function 1 4  

 

Modifying a R vector 

Modification of a Vector is the process of applying some operation on an individual element of a 

vector to change its value in the vector. There are different ways through which we can modify a 

vector:  

 R 
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# R program to modify elements of a Vector 

# Creating a vector 

X<- c(2, 7, 9, 7, 8, 2) 

# modify a specific element 

X[3] <- 1 

X[2] <-9 

cat('subscript operator', X, '\n') 

# Modify using different logics. 

X[1:5]<- 0 

cat('Logical indexing', X, '\n') 

# Modify by specifying  

# the position or elements. 

X<- X[c(3, 2, 1)] 

cat('combine() function', X) 

Output: 
subscript operator 2 9 1 7 8 2  

Logical indexing 0 0 0 0 0 2  

combine() function 0 0 0 

 

Deleting a R vector 

Deletion of a Vector is the process of deleting all of the elements of the vector. This can be done by 

assigning it to a NULL value.  

 

Output: 
Output vector NULL 
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Sorting elements of a R Vector 

sort() function is used with the help of which we can sort the values in ascending or descending 

order.  

 R 

# R program to sort elements of a Vector 

# Creation of Vector 

X<- c(8, 2, 7, 1, 11, 2)  

# Sort in ascending order 

A<- sort(X) 

cat('ascending order', A, '\n') 

# sort in descending order  

# by setting decreasing as TRUE 

B<- sort(X, decreasing = TRUE) 

cat('descending order', B) 

Output: 

# R program to delete a Vector 

# Creating a Vector 

M<- c(8, 10, 2, 5) 

# set NULL to the vector 

M<- NULL 

cat('Output vector', M) 
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ascending order 1  2  2  7  8 11 

descending order 11  8  7  2  2  1 

 

Scalars 

 

The simplest object type in R is a scalar. A scalar object is just a single value like a number or a 

name. In the previous chapter we defined several scalar objects. Here are examples of numeric 

scalars: 

# Examples of numeric scalars 

a <- 100 

b <- 3 / 100 

c <- (a + b) / b 

 

 

 

Scalars don’t have to be numeric, they can also be characters (also known as strings). In R, you 

denote characters using quotation marks. Here are examples of character scalars: 

# Examples of character scalars 

d <- "ship" 

 

e <- "cannon" 

f <- "Do any modern armies still use cannons?" 

As you can imagine, R treats numeric and character scalars differently. For example, while you 

can do basic arithmetic operations on numeric scalars – they won’t work on character scalars. If 

you try to perform numeric operations (like addition) on character scalars, you’ll get an error like 

this one: 

a <- "1" 

b <- "2" 

a + b 

Error in a + b: non-numeric argument to binary operator 

If you see an error like this one, it means that you’re trying to apply numeric operations to 

character objects. That’s just sick and wrong. 

 

##Vectors 

Now let’s move onto vectors. A vector object is just a combination of several scalars stored as a 

single object. For example, the numbers from one to ten could be a vector of length 10, and the 

characters in the English alphabet could be a vector of length 26. Like scalars, vectors can be 

either numeric or character (but not both!). 

There are many ways to create vectors in R. Here are the methods we will cover in this chapter:  
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Functions to create vectors. 

Function Example Result 

c(a, b, ...) c(1, 5, 9) 1, 5, 9 

a:b 1:5 1, 2, 3, 4, 5 

seq(from, to, by, length.out) seq(from = 0, to = 6, by = 2) 0, 2, 4, 6 

rep(x, times, each, length.out) rep(c(7, 8), times = 2, each = 2) 7, 7, 8, 8, 7, 7, 8, 8 

 

The simplest way to create a vector is with the c() function. The c here stands for concatenate, 

which means “bring them together”. The c() function takes several scalars as arguments, and 

returns a vector containing those objects. When using c(), place a comma in between the objects 

(scalars or vectors) you want to combine: 

Let’s use the c() function to create a vector called a containing the integers from 1 to 5. 

# Create an object a with the integers from 1 to 5 

a <- c(1, 2, 3, 4, 5) 

 

# Print the result 

a 

 

 

## [1] 1 2 3 4 5 

As you can see, R has stored all 5 numbers in the object a. Thanks R! 

You can also create longer vectors by combining vectors you have already defined. Let’s create a 

vector of the numbers from 1 to 10 by first generating a vector a from 1 to 5, and a vector b from 6 

to 10 then combine them into a single vector x: 

a <- c(1, 2, 3, 4, 5) 

b <- c(6, 7, 8, 9, 10) 

x <- c(a, b) 

x 

##  [1]  1  2  3  4  5  6  7  8  9 10 

You can also create character vectors by using the c() function to combine character scalars into 

character vectors: 
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Figure  This is not a pipe. It is a character vector. 

 

 

char.vec <- c("Ceci", "nest", "pas", "une", "pipe") 

char.vec 

## [1] "Ceci" "nest" "pas"  "une"  "pipe" 

While the c() function is the most straightforward way to create a vector, it’s also one of the most 

tedious. For example, let’s say you wanted to create a vector of all integers from 1 to 100. You 

definitely don’t want to have to type all the numbers into a c() operator. Thankfully, R has many 

simple built-in functions for generating numeric vectors. Let’s start with three of them: a:b, seq(), 

and rep(): 

a:b 

The a:b function takes two numeric scalars a and b as arguments, and returns a vector of numbers 

from the starting point a to the ending point b in steps of 1. 

Here are some examples of the a:b function in action. As you’ll see, you can go backwards or 

forwards, or make sequences between non-integers: 

1:10 

##  [1]  1  2  3  4  5  6  7  8  9 10 

10:1 

##  [1] 10  9  8  7  6  5  4  3  2  1 

2.5:8.5 

 

 

## [1] 2.5 3.5 4.5 5.5 6.5 7.5 8.5 

###seq() 

 

The seq() function is a more flexible version of a:b. Like a:b, seq() allows you to create a sequence 

from a starting number to an ending number. However, seq() has additional arguments that allow 

you to specify either the size of the steps between numbers, or the total length of the sequence.  
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The seq() function has two new arguments: by and length.out. If you use the by argument, the 

sequence will be in steps of the input to the by argument: 

# Create the numbers from 1 to 10 in steps of 1 

seq(from = 1, to = 10, by = 1) 

##  [1]  1  2  3  4  5  6  7  8  9 10 

 

# Integers from 0 to 100 in steps of 10 

seq(from = 0, to = 100, by = 10) 

##  [1]   0  10  20  30  40  50  60  70  80  90 100 

If you use the length.out argument, the sequence will have a length equal to length.out. 

# Create 10 numbers from 1 to 5 

seq(from = 1, to = 5, length.out = 10) 

##  [1] 1.0 1.4 1.9 2.3 2.8 3.2 3.7 4.1 4.6 5.0 

 

# 3 numbers from 0 to 100 

seq(from = 0, to = 100, length.out = 3) 

 

 

## [1]   0  50 100 

###rep() 

Argument Definition 

x A scalar or vector of values to repeat 

times The number of times to repeat x 

each The number of times to repeat each value within x 

length.out The desired length of the final sequence 

 

The rep() function allows you to repeat a scalar (or vector) a specified number of times, or to a 

desired length. Let’s do some reps. 

rep(x = 3, times = 10) 

##  [1] 3 3 3 3 3 3 3 3 3 3 

rep(x = c(1, 2), each = 3) 

## [1] 1 1 1 2 2 2 

rep(x = 1:3, length.out = 10) 

Argument Definition 

from The start of the sequence 

to The end of the sequence 

by The step-size of the sequence 

length.out The desired length of the final sequence (only use if you don’t specify by) 
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##  [1] 1 2 3 1 2 3 1 2 3 1 

As you can see, you can can include an a:b call within a rep()! 

You can even combine the times and each arguments within a single rep() function. For example, 

here’s how to create the sequence {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3} with one call to rep(): 

rep(x = 1:3, each = 2, times = 2) 

##  [1] 1 1 2 2 3 3 1 1 2 2 3 3 
Warning! Vectors contain either numbers or characters, not both 

A vector can only contain one type of scalar: either numeric or character. If you try to create a 

vector with numeric and character scalars, then R will convert all of the numeric scalars to  

characters. In the next code chunk, I’ll create a new vector called my.vec that contains a mixture of 

numeric and character scalars. 

my.vec <- c("a", 1, "b", 2, "c", 3) 

my.vec 

## [1] "a" "1" "b" "2" "c" "3" 

 

 

As you can see from the output, my.vec is stored as a character vector where all the numbers are 

converted to characters. 

 

Declarations 

In R, declarations typically refer to the process of creating or assigning values to variables, functions, 

or objects. However, R doesn't require explicit "declarations" as in some other languages (e.g., Java or 

C++). You can directly assign a value to a variable, and R will infer its type. That said, there are some 

important concepts in R related to how variables and functions are "declared" and used. 

1. Variable Declaration and Assignment 

In R, variables are created when you assign a value to them. There’s no need to declare the type of a 

variable, as R is dynamically typed. You can use either the <- or = assignment operators. 

r 

 

Copy code 

# Using <- (preferred) 

x <- 10 

 

# Using = 

y = 20 

In this case, x and y are variables, and R automatically assigns their type based on the value assigned 

to them (e.g., numeric, character, etc.). 

2. Vectors (Creating Lists) 

You can declare and assign vectors using the c() function, which concatenates elements into a vector. 

r 

Copy code 

 

 

my_vector <- c(1, 2, 3, 4) 
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3. Functions (Creating Functions) 

Functions in R are defined using the function() keyword. You can "declare" a function like this: 

r 

Copy code 

my_function <- function(a, b) { 

  return(a + b) 

} 

In this example, my_function is declared, and it takes two arguments a and b, returning their sum. 

4. Data Frames (Creating Data Frames) 

You can create a data frame by using the data.frame() function. This is a common structure for storing 

data in R. 

r 

Copy code 

my_data <- data.frame( 

  Name = c("Alice", "Bob", "Charlie"), 

  Age = c(25, 30, 35) 

) 

5. Constants (Global Constants) 

While R doesn’t have constants in the strict sense (like const in C++), you can create a variable that 

acts like a constant by simply not modifying its value after it’s set. 

r 

Copy code 

PI <- 3.14159  # Using the naming convention for constants 

6. Lists (Creating Lists) 

Lists in R are used to store heterogeneous elements. You declare a list like this: 

r 

 

Copy code 

my_list <- list(name="John", age=30, height=5.9) 

7. Packages 

To use external libraries or packages in R, you need to declare them using the library() or require() 

function after installing them. 

r 

Copy code 

install.packages("ggplot2")  # Install the package (if not already installed) 

library(ggplot2)  # Declare the package for use 
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8. Global and Local Variables 

R has global and local scopes. Variables that are created inside a function are local to that function. 

Variables that are created outside any function are global. 

r 

Copy code 

x <- 5  # Global variable 

 

my_function <- function() { 

  y <- 10  # Local variable 

  return(x + y) 

} 

9. Global Assignment 

You can assign values globally within a function using the <<- operator. This changes the value of a 

variable outside the function. 

r 

Copy code 

my_function <- function() { 

  x <<- 100  # Modify global x 

} 

 

my_function() 

print(x)  # Prints 100 

Summary of Common R Declarations: 

 Variable: x <- 10 

 Function: my_func <- function() { } 

 Vector: my_vector <- c(1, 2, 3) 

 Data Frame: my_df <- data.frame(a = 1:5, b = letters[1:5]) 

 List: my_list <- list(name = "Alice", age = 25) 

 Package: library(ggplot2) 

RECYCLING 

In R, recycling refers to a behavior that occurs when vectors of different lengths are combined or 

operated on element-wise. R automatically recycles the shorter vector to match the length of the 

longer vector in these situations. This allows operations like addition, subtraction, and other element-

wise operations between vectors of different lengths without explicitly needing to make the vectors 

the same length. 

 

 

However, recycling happens under certain rules, and it’s important to understand the behavior to 

avoid unintended results. 

How Recycling Works 
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When performing operations between two vectors of different lengths, R will recycle the elements of 

the shorter vector until it matches the length of the longer vector. The shorter vector will be reused 

from the beginning once it reaches the end. 

For example: 

r 

Copy code 

# Vectors of different lengths 

x <- c(1, 2, 3) 

y <- c(10, 20) 

 

# Adding vectors 

z <- x + y 

print(z) 

Output: 

r 

Copy code 

[1] 11 22 13 

 In this case, x has 3 elements and y has 2 elements. 

 R "recycles" y so that it becomes c(10, 20, 10), and the operation proceeds element-wise: 

o 1 + 10 = 11 

o 2 + 20 = 22 

o 3 + 10 = 13 

Rules of Recycling 

 Recycling only happens when the length of the shorter vector divides the length of the 

longer vector. If it doesn't, R will give a warning. 

 Length mismatch warning: If the length of the longer vector isn't a multiple of the shorter 

vector's length, R will give a warning to indicate this behavior. 

Example with Warning: 

r 

Copy code 

x <- c(1, 2, 3, 4) 

y <- c(10, 20) 

 

z <- x + y  # This will give a warning 

Output: 

r 

Copy code 

[1] 11 22 13 24 

Warning message: 

In x + y : longer object length is not a multiple of shorter object length 

Here, R recycles y to c(10, 20, 10, 20) to match the length of x, but since 4 (length of x) is not a 

multiple of 2 (length of y), it gives a warning. 
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Practical Example of Recycling 

Recycling is frequently used in operations like plotting, element-wise transformations, and arithmetic 

operations. Here’s an example with a more practical use case. 

r 

Copy code 

# Create a vector of numbers from 1 to 4 

data <- c(1, 2, 3, 4) 

 

# Create a vector of colors (2 colors) 

colors <- c("red", "blue") 

 

# Assign colors to data points in a plot (recycling happens here) 

plot(data, col=colors) 

In this case, R recycles the colors vector so that it repeats the sequence "red", "blue" for each data 

point in data. 

Key Points: 

 Recycling works when the length of the longer vector is a multiple of the shorter vector’s 

length. 

 Be cautious about potential bugs when the vectors are of mismatched lengths that don't fit the 

recycling rule. 

 It’s good practice to manually check lengths or ensure that you aren’t inadvertently relying 

on unintended recycling, especially when performing complex operations. 

Controlling Recycling 

If you don't want recycling to occur or if you want to avoid warnings, you can always explicitly make 

the vectors the same length, for example, by using rep() (repeat) or length() functions: 

r 

Copy code 

# Make sure both vectors are the same length 

x <- c(1, 2, 3, 4) 

 

 

 

y <- rep(c(10, 20), length.out = length(x))  # Recycle y manually 

 

z <- x + y  # Now no warning 

print(z) 

Output: 

r 

Copy code 

[1] 11 22 13 24 
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In this example, rep(c(10, 20), length.out = length(x)) ensures that y is the same length as x, and no 

warning is issued. 

 

Common Vector Operations 

Vectors are the most basic data types in R. Even a single object created is also stored in the form of 

a vector. Vectors are nothing but arrays as defined in other languages. Vectors contain a sequence 

of homogeneous types of data. If mixed values are given then it auto converts the data according to 

the precedence. There are various operations that can be performed on vectors in R.  

  

Creating a vector 

Vectors can be created in many ways as shown in the following example. The most usual is the use 

of ‘c’ function to combine different elements together.  
  

# Use of 'c' function  

# to combine the values as a vector. 

# by default the type will be double 

X <- c(1, 4, 5, 2, 6, 7)  

print('using c function') 

print(X) 

   

# using the seq() function to generate 

# a sequence of continuous values  

# with different step-size and length. 

 

# length.out defines the length of vector. 

Y <- seq(1, 10, length.out = 5)  
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print('using seq() function')  

print(Y) 

   

# using ':' operator to create 

# a vector of continuous values. 

Z <- 5:10 

print('using colon') 

print(Y) 

Output:  

  

using c function 1 4 5 2 6 7 

using seq function 1.00  3.25  5.50  7.75 10.00 

using colon 5  6  7  8  9 10 

  

Accessing vector elements 

Vector elements can be accessed in many ways. The most basic is using the ‘[]’, subscript operator. 

Following are the ways of accessing Vector elements: 

  

Note: vectors in R are 1 based indexed, unlike the normal C, python, etc format where indexing 

starts from 0 

Python3 

# Accessing elements using the position number. 

X <- c(2, 5, 8, 1, 2) 

print('using Subscript operator') 

print(X[2]) 

# Accessing specific values by passing 
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# a vector inside another vector. 

Y <- c(4, 5, 2, 1, 7) 

print('using c function') 

print(Y[c(4, 1)]) 

# Logical indexing 

Z <- c(5, 2, 1, 4, 4, 3) 

print('Logical indexing') 

print(Z[Z>3]) 

Output:  

  

using Subscript operator 5 

using c function 1 4 

Logical indexing 5 4 4 

  

Modifying a vector 

Vectors can be modified using different indexing variations which are mentioned in the below 

code:  

 

# Creating a vector 

X <- c(2, 5, 1, 7, 8, 2) 

   

# modify a specific element 

X[3] <- 11 

print('Using subscript operator') 
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print(X)  

# Modify using different logics. 

X[X>9] <- 0 

print('Logical indexing') 

print(X) 

# Modify by specifying the position or elements. 

X <- X[c(5, 2, 1)] 

print('using c function') 

print(X) 

Output:  

  

Using subscript operator 2  5 11  7  8  2 

Logical indexing 2 5 0 7 8 2 

using c function 8 5 2 

  

Deleting a vector 

Vectors can be deleted by reassigning them as NULL. To delete a vector we use the NULL 

operator.  

  

 Python3 

# Creating a vector 

X <- c(5, 2, 1, 6) 

# Deleting a vector 

X <- NULL 
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print('Deleted vector') 

print(X) 

Deleted vector NULL 

Arithmetic operations 

We can perform arithmetic operations between 2 vectors. These operations are performed element-

wise and hence the length of both the vectors should be the same.  
  

# Creating Vectors 

X <- c(5, 2, 5, 1, 51, 2) 

Y <- c(7, 9, 1, 5, 2, 1) 

# Addition 

Z <- X + Y 

print('Addition') 

print(Z)  

# Subtraction 

S <- X - Y 

print('Subtraction') 

print(S)  

# Multiplication 

M <- X * Y 

print('Multiplication') 

print(M) 
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# Division 

D <- X / Y 

print('Division') 

print(D) 

 

 

Output:  

  
Addition 12 11  6  6 53  3 

Subtraction -2 -7  4 -4 49  1 

Multiplication 35  18   5   5 102   2 

Division 0.7142857  0.2222222  5.0000000  0.2000000 25.5000000  2.0000000 

  

Sorting of Vectors 

For sorting we use the sort() function which sorts the vector in ascending order by default.  

  

# Creating a Vector 

X <- c(5, 2, 5, 1, 51, 2) 

   

# Sort in ascending order 

A <- sort(X) 

print('sorting done in ascending order') 

print(A) 

# sort in descending order. 
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B <- sort(X, decreasing = TRUE) 

print('sorting done in descending order') 

print(B) 

 

 

 

Output:  

  

sorting done in ascending order 1  2  2  5  5 51 

sorting done in descending order 51  5  5  2  2  1 

 

 

 

Using all and any 

In R, the functions all() and any() are used to evaluate logical conditions over vectors, matrices, or 

other data structures. These functions are very useful for checking whether all or any elements in a 

logical object satisfy a given condition. 

1. all() Function 

The all() function returns TRUE if all the elements in a logical vector (or the result of a logical 

operation) are TRUE. If any element is FALSE, it returns FALSE. 

Syntax: 

r 

Copy code 

all(x, na.rm = FALSE) 

 x: A logical vector (or an object that can be coerced to logical). 

 na.rm: If TRUE, NA values are ignored. If FALSE (the default), NA will cause the result to 

be NA. 

Example: 

r 

Copy code 

 

 

# Logical vector 

x <- c(TRUE, TRUE, TRUE) 

 

# Check if all values are TRUE 

 

all(x) 
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# Output: TRUE 

 

 

# Another example with one FALSE 

x <- c(TRUE, FALSE, TRUE) 

all(x) 

# Output: FALSE 

 

# With NA (using na.rm = TRUE) 

x <- c(TRUE, NA, TRUE) 

all(x, na.rm = TRUE) 

# Output: TRUE (ignores NA) 

2. any() Function 

The any() function returns TRUE if any of the elements in the vector are TRUE. It returns FALSE 

only if all elements are FALSE. If the vector contains NA, it will return NA unless you specify na.rm 

= TRUE. 

Syntax: 

r 

Copy code 

any(x, na.rm = FALSE) 

 x: A logical vector (or an object that can be coerced to logical). 

 na.rm: If TRUE, NA values are ignored. If FALSE (the default), NA will cause the result to 

be NA. 

Example: 

r 

Copy code 

# Logical vector 

x <- c(TRUE, FALSE, FALSE) 

 

# Check if any value is TRUE 

any(x) 

# Output: TRUE 

 

# All values are FALSE 

x <- c(FALSE, FALSE, FALSE) 

any(x) 

# Output: FALSE 

 

# With NA (using na.rm = TRUE) 

x <- c(FALSE, NA, FALSE) 

any(x, na.rm = TRUE) 

# Output: FALSE (ignores NA) 

3. Use Cases and Examples 

Here are a few practical examples of how all() and any() might be used: 
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Example 1: Checking conditions in a vector 

You can use all() and any() to check conditions over vectors or arrays. 

r 

 

Copy code 

# Check if all values are positive 

numbers <- c(2, 3, 4, 5) 

all(numbers > 0)  # Check if all numbers are greater than 0 

# Output: TRUE 

 

# Check if any value is negative 

numbers <- c(2, -3, 4, 5) 

any(numbers < 0)  # Check if any number is less than 0 

# Output: TRUE 

 

 

Example 2: Filtering or Subsetting Data 

You might use these functions to filter or subset data based on certain conditions. 

r 

Copy code 

# Given a data frame of students' scores 

scores <- data.frame(name = c("Alice", "Bob", "Charlie"), 

                     score = c(85, 45, 90)) 

 

# Check if all students passed (let's say passing score is 50) 

all(scores$score >= 50)  # Returns TRUE if all students passed 

# Output: FALSE (since Bob's score is 45) 

 

# Check if any student failed 

any(scores$score < 50)  # Returns TRUE if any student failed 

# Output: TRUE (since Bob's score is less than 50) 

Example 3: Handling NA Values 

In real-world data, NA values are common. By using na.rm = TRUE, you can ignore missing values 

in your checks. 

r 

Copy code 

# Vector with NA values 

x <- c(TRUE, FALSE, NA, TRUE) 

 

# Check if all values are TRUE (ignoring NA values) 

all(x, na.rm = TRUE)  # Output: FALSE 

 

# Check if any value is TRUE (ignoring NA values) 

any(x, na.rm = TRUE)  # Output: TRUE 

4. Combination of all() and any() with Logical Expressions 
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You can also combine all() and any() with logical expressions or conditions directly. 

Example 1: Combining all() with logical operators 

r 

Copy code 

# Checking if all values in a vector are greater than 0 

x <- c(2, 3, 4, 5) 

 

all(x > 0)  # TRUE, because all values are positive 

 

# Checking if all values are even 

x <- c(2, 4, 6, 8) 

 

 

all(x %% 2 == 0)  # TRUE, because all numbers are even 

 

Example 2: Using any() with logical operators 

r 

Copy code 

# Checking if any value in a vector is less than 0 

x <- c(1, -3, 5, 6) 

 

 

any(x < 0)  # TRUE, because there is a negative number (-3) 

 

# Checking if any value in a vector is NA 

x <- c(1, 2, NA, 4) 

any(is.na(x))  # TRUE, because there is an NA value 

 

 

5. Summary 

 all(x): Returns TRUE if all elements of x are TRUE, otherwise FALSE. 

 any(x): Returns TRUE if any element of x is TRUE, otherwise FALSE. 

 Both functions are useful for evaluating logical conditions over vectors, matrices, or arrays. 

 You can handle NA values using the na.rm = TRUE argument to ignore NA values in the 

evaluation. 

Vectorized operations – Filtering – Victoriesed if-then else – Vector Element names 

Vectorized Operations in R 

One of the core features of R is its ability to perform vectorized operations, which allows you to 

apply operations to entire vectors (or other data structures like matrices or data frames) without the 

need for explicit loops. This makes the code more concise and often much faster than traditional 

looping constructs. 

Let's break down some key concepts: vectorized operations, filtering, if-then-else (vectorized 

conditional logic), and vector element names. 
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1. Vectorized Operations 

In R, many basic operations are vectorized. This means that R automatically applies the operation 

element-wise to the vectors, matrices, or other data structures. 

Example of Vectorized Operations: 

r 

Copy code 

# Vector addition (vectorized) 

x <- c(1, 2, 3) 

y <- c(4, 5, 6) 

z <- x + y 

print(z) 

Output: 

r 

 

Copy code 

 

[1] 5 7 9 

Here, x + y automatically adds corresponding elements of x and y, which is much more efficient than 

using a loop. 

Other Vectorized Operations: 

r 

Copy code 

# Element-wise multiplication 

z <- x * y 

print(z) 

 

# Element-wise division 

z <- x / y 

print(z) 

 

# Element-wise comparison 

z <- x > y  # Checks if elements in x are greater than those in y 

print(z) 

 

2. Filtering Vectors 

Filtering refers to selecting elements from a vector that meet a certain condition. In R, this can be 

done using logical indexing. Logical indexing is vectorized, meaning you can apply a condition 

across the entire vector to filter it. 

Example: Filtering Values Greater than a Threshold 

r 

Copy code 

x <- c(1, 2, 3, 4, 5, 6) 

filtered_x <- x[x > 3] 

print(filtered_x) 
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Output: 

r 

Copy code 

[1] 4 5 6 

 x > 3 generates a logical vector c(FALSE, FALSE, FALSE, TRUE, TRUE, TRUE), and then 

x[x > 3] selects the corresponding elements from x where the condition is TRUE. 

Example: Filtering with Multiple Conditions 

You can combine multiple conditions using logical operators (& for AND, | for OR). 

r 

Copy code 

# Filter values greater than 2 and less than 5 

filtered_x <- x[x > 2 & x < 5] 

print(filtered_x) 
Output: 

r 

Copy code 

[1] 3 4 

 

 

3. Vectorized If-Then-Else (Conditional Logic) 

In R, you can use the ifelse() function to apply a vectorized version of an "if-then-else" logic. This 

allows you to assign values based on a condition in a vectorized manner without using for loops. 

Syntax: 

r 

Copy code 

ifelse(test, yes, no) 

 test: The condition to check (a logical vector). 

 yes: The value to return if the condition is TRUE. 

 no: The value to return if the condition is FALSE. 

Example: Applying ifelse() to a Vector 

r 

Copy code 

x <- c(1, 2, 3, 4, 5) 

 

# Replace values less than 3 with 0, otherwise keep the original value 

result <- ifelse(x < 3, 0, x) 

print(result) 

Output: 

r 

Copy code 
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[1] 0 0 3 4 5 

In this case, values of x that are less than 3 are replaced with 0, and the rest of the values remain 

unchanged. 

Example: More Complex Conditions 

You can also use more complex conditions in ifelse(). 

r 

Copy code 

x <- c(1, 2, 3, 4, 5) 

 

# Use different values for different conditions 

result <- ifelse(x < 2, "Low", ifelse(x < 4, "Medium", "High")) 

print(result) 

Output: 

r 

Copy code 

[1] "Low"    "Low"    "Medium" "Medium" "High"   

In this example, we apply nested ifelse() to assign different categories ("Low", "Medium", "High") 

based on the values in x. 

4. Vector Element Names 

In R, vectors can have named elements. This allows you to access or modify elements by name rather 

than by position. You can assign names to elements of a vector using the names() function. 

Assigning Names to a Vector: 

r 

Copy code 

# Create a vector 

x <- c(10, 20, 30) 

 

# Assign names to the elements 

names(x) <- c("A", "B", "C") 

print(x) 

Output: 

r 

Copy code 

  A   B   C  

 10  20  30  

Now you can access or modify elements by their names: 

r 

Copy code 

# Access by name 
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print(x["A"]) 

 

# Modify by name 

x["B"] <- 25 

print(x) 

Output: 

r 

Copy code 

  A   B   C  

 10  25  30  

Vector Element Names in Conditional Operations 

You can also use element names in vectorized conditional operations: 

r 

Copy code 

# Create a vector with named elements 

x <- c(A = 10, B = 20, C = 30) 

 

 

 

# Conditional filtering based on names 

x[x > 15] 

 

Output: 

r 

Copy code 

B C  

 

20 30  

Example: Adding Names Dynamically 

You can also dynamically assign names to vector elements. For instance, if you have a vector of 

numbers and a corresponding vector of names, you can combine them: 

r 

Copy code 

# Numeric vector and names 

numbers <- c(100, 200, 300) 

labels <- c("X", "Y", "Z") 

 

# Assign names from another vector 

names(numbers) <- labels 

print(numbers) 

Output: 

r 
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Copy code 

  X   Y   Z  

100 200 300  

 

5. Summary of Key Concepts 

 Vectorized Operations: R performs operations on entire vectors without the need for explicit 

loops. Operations are applied element-wise across the vector. 

 Filtering: Use logical conditions to filter vectors. This is done using logical indexing, which 

is a vectorized operation. 

 If-Then-Else: Use ifelse() for vectorized conditional logic, where you can specify what 

happens for TRUE and FALSE conditions. 

 Vector Element Names: You can assign names to the elements of a vector, which allows you 

to access and manipulate the vector by name. 

UNIT II Matrices Creating matrices – Matrix Operations – Applying Functions to Matrix Rows 

and Columns – Adding and deleting rows and columns - Vector/Matrix Distinction – Avoiding 

Dimension Reduction – Higher Dimensional arrays – lists – Creating lists – General list 

operations – Accessing list components and values – applying functions to lists – recursive lists. 

Matrices 

Matrices in R are fundamental data structures, particularly useful in statistical and mathematical 

computations. They are essential because they provide an efficient way to store and manipulate 

tabular data where all elements are of the same type (usually numeric). Here's why matrices are 

important in R: 

1. Compact Representation of Data 

A matrix is a two-dimensional array-like structure, where data is stored in rows and columns. It is 

well-suited for situations where all data is homogeneous. 

Example: 

R 

matrix_example <- matrix(1:6, nrow = 2, ncol = 3) 

print(matrix_example) 

Output: 

      [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

 

2. Simplifies Mathematical Operations 

Matrices are optimized for matrix algebra, such as addition, subtraction, multiplication, and solving 

systems of linear equations. 

Example: 
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# Matrix addition 

A <- matrix(1:4, nrow = 2) 

B <- matrix(5:8, nrow = 2) 

C <- A + B 

print(C) 

Output: 

     [,1] [,2] 

[1,]    6    8 

[2,]    8   10 

3. Efficient Data Manipulation 

Matrix operations are vectorized in R, meaning they are faster and more efficient than loops for large 

datasets. 

Example: 

R 

# Element-wise multiplication 

A * B 

4. Widely Used in Statistical Analysis 

Matrices are the basis for many statistical techniques, such as: 

 Linear regression 

 Principal Component Analysis (PCA) 

 Eigenvalue decomposition 

 Correlation and covariance calculations 

 

5. Integrates with Other R Functions 

Matrices are supported by many R functions, such as solve() for solving linear systems, t() for 

transpose, and eigen() for eigenvalues. 

 

Example: 

R 

# Transpose of a matrix 

t(A) 

 

6. Visualization and Modeling 

Matrices are often used to store and manipulate data for visualization (e.g., heatmaps) and models that 

require structured input data. 
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In summary, matrices in R are a versatile and essential tool for numerical and statistical programming, 

enabling efficient data handling and mathematical computations. 

Matrices : Creating matrices 

Creating matrices in R programming involves using the matrix() function, which allows you to define 

a matrix by specifying its elements, dimensions, and layout (row-wise or column-wise). Below are the 

basic steps and examples to create matrices in R: 

 

1. Creating a Simple Matrix 

R 

# Create a 3x3 matrix with numbers 1 to 9 

matrix_example <- matrix(1:9, nrow = 3, ncol = 3) 

print(matrix_example) 

Output: 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

2. Changing the Filling Order 

By default, R fills a matrix column-wise. You can change it to row-wise using the byrow argument. 

 

R 

# Create a 3x3 matrix filled row-wise 

matrix_rowwise <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE) 

print(matrix_rowwise) 

Output: 

     [,1] [,2] [,3] 

[1, 

Matrix operations in R are straightforward and intuitive. R provides built-in functions to perform a 

wide variety of matrix operations, including basic arithmetic, transformations, and advanced 

computations like decompositions. Here's an overview of key matrix operations in R: 

 

1. Basic Arithmetic Operations 
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Matrix operations in R are element-wise by default. 

Addition and Subtraction 

R 

A <- matrix(1:4, nrow = 2) 

B <- matrix(5:8, nrow = 2) 

 

# Addition 

C_add <- A + B 

print(C_add) 

 

# Subtraction 

C_sub <- A - B 

print(C_sub) 

Output: 

csharp 

Addition: 

     [,1] [,2] 

[1,]    6   10 

[2,]    8   12 

 

Subtraction: 

     [,1] [,2] 

[1,]   -4   -4 

[2,]   -4   -4 

 

Multiplication (Element-Wise) 

R 

C_mult <- A * B 

print(C_mult) 

Output: 

css 

Copy code 

     [,1] [,2] 

 

[1,]    5   21 

[2,]   12   32 

 

Division (Element-Wise) 

R 

C_div <- A / B 

print(C_div) 

Output: 

css 

Copy code 

     [,1]      [,2] 



 
46 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

[1,] 0.2  0.4285714 

[2,] 0.4  0.5000000 

 

2. Matrix Multiplication 

Matrix multiplication (dot product) is performed using the %*% operator. 

R 

Copy codeA <- matrix(c(1, 2, 3, 4), nrow = 2) 

B <- matrix(c(2, 0, 1, 2), nrow = 2) 

 

# Matrix multiplication 

C_dot <- A %*% B 

print(C_dot) 

Output: 

     [,1] [,2] 

[1,]    4    4 

[2,]   10    8 

 

3. Transpose of a Matrix 

The t() function transposes a matrix. 

R 

transpose <- t(A) 

print(transpose) 

Output: 

css 

Copy code 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

 

4. Determinant 

The det() function calculates the determinant of a square matrix. 

 

R 

determinant <- det(A) 

print(determinant) 

 

5. Inverse of a Matrix 

The solve() function computes the inverse of a matrix. 
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inverse <- solve(A) 

print(inverse) 

 

6. Eigenvalues and Eigenvectors 

The eigen() function computes the eigenvalues and eigenvectors. 

R 

eigen_result <- eigen(A) 

print(eigen_result) 

 

7. Diagonal Operations 

The diag() function extracts or creates diagonal matrices. 

 Extract diagonal: 

R 

diag(A) 

 Create diagonal matrix: 

R 

diag(c(1, 2, 3)) 

 

8. Identity Matrix 

The diag() function can also create an identity matrix. 

R 

I <- diag(3)  # 3x3 identity matrix 

print(I) 

 

9. Solving Linear Systems 

Solve a system of linear equations AX=BAX = BAX=B using solve(). 

R 

A <- matrix(c(2, 1, 1, 3), nrow = 2) 

B <- c(1, 2) 

 

# Solve for X 

X <- solve(A, B) 

 

 

print(X) 
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10. Singular Value Decomposition (SVD) 

The svd() function computes the singular value decomposition. 

R 

svd_result <- svd(A) 

print(svd_result) 

 

11. Element Access and Manipulation 

 Access specific elements: A[1, 2] 

 Access entire row: A[1, ] 

 Access entire column: A[, 2] 

 

These operations allow efficient numerical computation and data manipulation, making matrices one 

of the most powerful tools in R! 

 

Applying Functions to Matrix Rows and Columns 

 

Applying functions to rows or columns of a matrix in R is a common task. R provides several tools 

for this, including the apply() function, which is versatile and efficient. Here's a guide to using it and 

other relevant functions: 

 

1. Using apply() 

The apply() function allows you to apply a function to the rows or columns of a matrix. 

Syntax: 

R 

apply(X, MARGIN, FUN, ...) 

 X: The matrix. 

 MARGIN: 1 for rows, 2 for columns. 

 FUN: The function to apply (e.g., sum, mean). 

Example: Row and Column Sums 

R 

# Create a matrix 

matrix_example <- matrix(1:12, nrow = 3, ncol = 4) 

 

# Sum of rows 

row_sums <- apply(matrix_example, 1, sum) 

print(row_sums) 
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# Sum of columns 

 

 

 

column_sums <- apply(matrix_example, 2, sum) 

print(column_sums) 

Output: 

csharp 

Copy code 

Row sums: 

[1] 22 26 30 

 

Column sums: 

[1] 12 15 18 21 

 

 

Example: Applying a Custom Function 

You can define your own function to apply. 

R 

# Mean of rows 

row_means <- apply(matrix_example, 1, mean) 

print(row_means) 

 

# Custom function: Range of each column 

column_ranges <- apply(matrix_example, 2, function(x) max(x) - min(x)) 

print(column_ranges) 

 

2. Using rowSums(), colSums(), rowMeans(), colMeans() 

For common operations like sums and means, R has optimized functions that are faster than apply(). 

R 

# Row and column sums 

row_sums <- rowSums(matrix_example) 

column_sums <- colSums(matrix_example) 

 

# Row and column means 

row_means <- rowMeans(matrix_example) 

column_means <- colMeans(matrix_example) 

 

print(row_sums) 

print(column_sums) 

print(row_means) 

print(column_means) 

 

3. Using lapply() or sapply() 
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When dealing with individual rows or columns as lists or vectors, lapply() and sapply() can be useful. 

Example: Applying Functions with sapply() 

R 

# Transpose matrix to treat rows as columns 

row_means <- sapply(1:nrow(matrix_example), function(i) mean(matrix_example[i, ])) 

print(row_means) 

 

 

4. Using the dplyr Package 

For more advanced row/column operations, the dplyr package is handy. 

Example: Summing Rows 

R 

library(dplyr) 

 

# Convert matrix to data frame 

df <- as.data.frame(matrix_example) 

 

# Row sums using dplyr 

df <- df %>% mutate(row_sum = rowSums(across())) 

print(df) 

 

5. Working with Specific Columns or Rows 

You can use indexing to apply functions to specific rows or columns. 

Example: Apply to Specific Columns 

R 

# Square values in the first column 

matrix_example[, 1] <- matrix_example[, 1]^2 

print(matrix_example) 

 

By using these tools, you can efficiently manipulate and analyze rows and columns of matrices in R! 

Adding and deleting rows and columns 

Adding and deleting rows and columns in a matrix in R can be easily achieved using functions like 

rbind() and cbind() for adding rows and columns, and indexing for deleting them. Here's how you can 

do it: 

 

1. Adding Rows to a Matrix 

Use the rbind() function to add one or more rows. 
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Example: Adding a Row 

R 

# Create a matrix 

matrix_example <- matrix(1:6, nrow = 2, ncol = 3) 

print(matrix_example) 

 

# Add a new row 

new_row <- c(7, 8, 9) 

matrix_with_row <- rbind(matrix_example, new_row) 

print(matrix_with_row) 

Output: 

less 

Original Matrix: 

    

  [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

 

Matrix After Adding Row: 

     [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

[3,]    7    8    9 
2. Adding Columns to a Matrix 

Use the cbind() function to add one or more columns. 

Example: Adding a Column 

R 

# Add a new column 

new_column <- c(10, 11) 

matrix_with_column <- cbind(matrix_example, new_column) 

print(matrix_with_column) 

Output: 

     [,1] [,2] [,3] [,4] 

[1,]    1    3    5   10 

[2,]    2    4    6   11 

 

3. Deleting Rows from a Matrix 

You can delete rows by indexing and omitting the rows you want to remove. 

Example: Deleting a Row 

R 

# Delete the second row 

matrix_without_row <- matrix_example[-2, ] 

print(matrix_without_row) 
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Output: 

css 

     [,1] [,2] [,3] 

[1,]    1    3    5 

 

4. Deleting Columns from a Matrix 

Similarly, delete columns by indexing and omitting the columns. 

 

Example: Deleting a Column 

R 

# Delete the third column 

matrix_without_column <- matrix_example[, -3] 

print(matrix_without_column) 

Output: 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

 

5. Adding Multiple Rows or Columns 

You can add multiple rows or columns at once using rbind() and cbind(). 

Example: Adding Multiple Rows 

R 

# Add multiple rows 

new_rows <- matrix(c(7, 8, 9, 10, 11, 12), nrow = 2) 

matrix_with_rows <- rbind(matrix_example, new_rows) 

print(matrix_with_rows) 

Example: Adding Multiple Columns 

R 

# Add multiple columns 

new_columns <- matrix(c(10, 11, 12, 13), ncol = 2) 

matrix_with_columns <- cbind(matrix_example, new_columns) 

print(matrix_with_columns) 

 

6. Replacing Rows or Columns 

Replace rows or columns by assigning new values. 

Example: Replace a Row 

R 

matrix_example[1, ] <- c(100, 101, 102) 

print(matrix_example) 
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Example: Replace a Column 

R 

matrix_example[, 2] <- c(200, 201) 

print(matrix_example) 

 

These techniques provide flexibility in managing matrix structures, making it easy to modify and 

adapt data in R 

Vector/Matrix Distinction 

In R, vectors and matrices are fundamental data structures, but they are distinct in their structure and 

intended usage. Understanding the distinction between them is crucial for effective data manipulation 

and computation. Here's a breakdown: 

 

1. Vector: 

A vector is a one-dimensional array that contains elements of the same type (e.g., numeric, character, 

logical). 

Key Characteristics: 

 One-dimensional: A single row or column of data. 

 Homogeneous: All elements must be of the same type. 

 Created using the c() or similar functions. 

Example: 

R 

# Create a numeric vector 

v <- c(1, 2, 3, 4) 

print(v) 

Output: 

 [1] 1 2 3 4 

2. Matrix: 

A matrix is a two-dimensional array with rows and columns, where all elements are of the same type. 

Key Characteristics: 

 Two-dimensional: Has rows and columns (e.g., m×nm \times nm×n). 

 Homogeneous: All elements must be of the same type. 

 Created using the matrix() function, or by combining vectors with rbind() or cbind(). 

Example: 

# Create a 2x2 numeric matrix 
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m <- matrix(1:4, nrow = 2) 

print(m) 

Output: 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

Key Distinctions: 

 

Feature 
Vector Matrix 

Dimension         1D (length) 2D (rows and columns) 

Creation c(), seq(), rep() matrix(), rbind(), cbind() 

Homogeneity Homogeneous Homogeneous 

Access Single index: v[1] Row and column indices: m[1, 2] 

Structure Linear sequence of elements Rectangular grid of elements 

 

3. Conversion Between Vectors and Matrices 

Convert a Vector to a Matrix 

You can convert a vector into a matrix using matrix(). 

R 

v <- c(1, 2, 3, 4) 

m <- matrix(v, nrow = 2, ncol = 2) 

print(m) 

Output: 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

Flatten a Matrix to a Vector 

Use the as.vector() function or simply reference the matrix. 

R 

v_from_matrix <- as.vector(m) 

print(v_from_matrix) 

Output: 
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csharp 

 [1] 1 2 3 4 

 

4. Dimensionality 

The dim() function reveals the dimensions of an object. 

 Vector: A vector has no dim attribute; only its length matters. 

 

 

R 

length(v)  # Returns 4 

dim(v)     # Returns NULL 

 Matrix: A matrix always has dimensions. 

 

R 

dim(m)  # Returns c(2, 2) 

 

5. When to Use Vectors or Matrices? 

 Use Vectors: When working with linear data or a single set of observations. 

 Use Matrices: When dealing with tabular data, linear algebra, or computations requiring row-

column relationships. 

 

Summary 

 Vectors: Simplest structure, 1D, homogeneous. 

 Matrices: More structured, 2D, homogeneous, optimized for mathematical operations. 

Understanding these distinctions ensures you use the appropriate structure for your tasks in R! 

Avoiding Dimension Reduction 

In R, dimension reduction occurs when operations on matrices or arrays simplify the structure, often 

converting matrices to vectors. This can happen when selecting a single row or column from a matrix, 

as R by default drops the dimensions. To avoid this, you can explicitly control this behavior using the 

drop = FALSE argument. Here's how to handle it: 

 

1. The Default Behavior 

When selecting a single row or column from a matrix, R reduces the matrix to a vector. 
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Example: Dimension Reduction 

R 

# Create a matrix 

m <- matrix(1:9, nrow = 3, ncol = 3) 

print(m) 

 

# Select the first row 

row1 <- m[1, ] 

print(row1) 

Output: 

Original Matrix: 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

Row Selection (Reduced to Vector): 

[1] 1 4 7 

In this example, m[1, ] extracts the first row as a vector, dropping the matrix structure. 

 

2. Preventing Dimension Reduction 

Use drop = FALSE when indexing to preserve the matrix structure. 

Example: Retaining Matrix Structure 

R 

# Select the first row and keep it as a matrix 

row1_matrix <- m[1, , drop = FALSE] 

print(row1_matrix) 

 

# Select the first column and keep it as a matrix 

col1_matrix <- m[, 1, drop = FALSE] 

print(col1_matrix) 

Output: 

less 

Row as Matrix: 

     [,1] [,2] [,3] 

[1,]    1    4    7 

 

Column as Matrix: 

     [,1] 

[1,]    1 

[2,]    2 

[3,]    3 
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3. General Syntax 

To avoid dimension reduction in any operation: 

 When extracting rows: matrix[row, , drop = FALSE] 

 When extracting columns: matrix[, col, drop = FALSE] 

 When extracting elements but retaining structure: Use slicing instead of single indexing. 

 

4. Arrays and Dimension Preservation 

In multi-dimensional arrays, a similar issue occurs, but you can use drop = FALSE to retain higher-

dimensional structures. 

Example: 3D Array 

R 

# Create a 3D array 

 

 

array_example <- array(1:24, dim = c(3, 4, 2)) 

 

# Select a 2D slice without reducing dimensions 

slice <- array_example[,,1, drop = FALSE] 

print(dim(slice))  # Dimensions are preserved 

 

5. Why Avoid Dimension Reduction? 

 Data Consistency: Prevents errors in downstream operations by preserving the expected 

structure. 

 Code Robustness: Avoids implicit conversions that could lead to unexpected behavior. 

 

6. Forcing Dimension Reduction 

If you want to enforce dimension reduction (e.g., explicitly convert to a vector), you can use 

as.vector() or deliberately omit drop. 

 

Summary 

 By default, R simplifies dimensions when selecting rows or columns from matrices. 

 Use drop = FALSE to preserve the matrix or array structure. 

 Always check your intended structure with dim() to ensure correctness in your workflow. 

In R, dimension reduction occurs when operations on matrices or arrays simplify the structure, often 

converting matrices to vectors. This can happen when selecting a single row or column from a matrix, 

as R by default drops the dimensions. To avoid this, you can explicitly control this behavior using the 

drop = FALSE argument. Here's how to handle it: 
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1. The Default Behavior 

When selecting a single row or column from a matrix, R reduces the matrix to a vector. 

Example: Dimension Reduction 

R 

# Create a matrix 

m <- matrix(1:9, nrow = 3, ncol = 3) 

print(m) 

 

# Select the first row 

row1 <- m[1, ] 

print(row1) 

 

Output:Original Matrix: 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

Row Selection (Reduced to Vector): 

[1] 1 4 7 

In this example, m[1, ] extracts the first row as a vector, dropping the matrix structure. 

2. Preventing Dimension Reduction 

Use drop = FALSE when indexing to preserve the matrix structure. 

Example: Retaining Matrix Structure 

R 

# Select the first row and keep it as a matrix 

row1_matrix <- m[1, , drop = FALSE] 

print(row1_matrix) 

 

# Select the first column and keep it as a matrix 

col1_matrix <- m[, 1, drop = FALSE] 

print(col1_matrix) 

Output: 

less 

Copy code 

Row as Matrix: 

     [,1] [,2] [,3] 

[1,]    1    4    7 

 

Column as Matrix: 

     [,1] 

[1,]    1 

[2,]    2 



 
59 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

[3,]    3 

 

3. General Syntax 

To avoid dimension reduction in any operation: 

 When extracting rows: matrix[row, , drop = FALSE] 

 When extracting columns: matrix[, col, drop = FALSE] 

 When extracting elements but retaining structure: Use slicing instead of single indexing. 

 

4. Arrays and Dimension Preservation 

In multi-dimensional arrays, a similar issue occurs, but you can use drop = FALSE to retain higher-

dimensional structures. 

Example: 3D Array 

R 

# Create a 3D array 

array_example <- array(1:24, dim = c(3, 4, 2)) 

 

# Select a 2D slice without reducing dimensions 

slice <- array_example[,,1, drop = FALSE] 

print(dim(slice))  # Dimensions are preserved 

 

5. Why Avoid Dimension Reduction? 

 Data Consistency: Prevents errors in downstream operations by preserving the expected 

structure. 

 Code Robustness: Avoids implicit conversions that could lead to unexpected behavior. 

 

6. Forcing Dimension Reduction 

If you want to enforce dimension reduction (e.g., explicitly convert to a vector), you can use 

as.vector() or deliberately omit drop. 

 

Summary 

 By default, R simplifies dimensions when selecting rows or columns from matrices. 

 Use drop = FALSE to preserve the matrix or array structure. 

 Always check your intended structure with dim() to ensure correctness in your workflow. 

Higher Dimensional arrays 
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Higher-dimensional arrays in R are an extension of matrices, allowing for data storage and 

manipulation in more than two dimensions. They are particularly useful for representing complex 

data, such as tensors or datasets with multiple attributes. 

1. Creating Higher-Dimensional Arrays 

Use the array() function to create arrays with more than two dimensions. 

Syntax: 

R 

array(data, dim, dimnames) 

 data: The elements to be included in the array. 

 dim: A vector specifying the dimensions (e.g., number of rows, columns, and additional 

dimensions). 

 dimnames: Optional names for dimensions. 

Example: Creating a 3D Array 

R 

# Create a 3D array with dimensions 3x3x2 

array_3d <- array(1:18, dim = c(3, 3, 2)) 

print(array_3d) 
Output 

, , 1 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

, , 2 

     [,1] [,2] [,3] 

[1,]   10   13   16 

[2,]   11   14   17 

[3,]   12   15   18 

 

2. Naming Dimensions 

You can add meaningful names to the dimensions for better readability. 

Example: Adding Dimension Names 

R 

# Add names to dimensions 

dimnames(array_3d) <- list( 

  rows = c("R1", "R2", "R3"), 

  cols = c("C1", "C2", "C3"), 

  layers = c("L1", "L2") 

) 

print(array_3d) 

Output: 

markdown 

, , L1 
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     C1 C2 C3 

R1    1  4  7 

R2    2  5  8 

R3    3  6  9 

 

, , L2 

     C1 C2 C3 

R1   10 13 16 

R2   11 14 17 

R3   12 15 18 

3. Accessing Elements 

Access elements using indices for all dimensions. 

Access Specific Element 

# Access the element at row 2, column 3, layer 1 

array_3d[2, 3, 1] 

Output: 

 [1] 8 

Access Entire Slices 

R 

Copy code 

# Access the entire first layer 

array_3d[, , 1] 

 

# Access the second column across all layers 

array_3d[, 2, ] 

 

4. Manipulating Higher-Dimensional Arrays 

Reshaping 

Change the dimensions of an array using the dim() function. 

R 

# Reshape array to 2x3x3 

dim(array_3d) <- c(2, 3, 3) 

print(array_3d) 

Combining Arrays 

Use functions like abind() from the abind package to combine arrays. 

R 

library(abind) 

 

# Combine along a new dimension 

array_combined <- abind(array_3d, array_3d, along = 4) 

print(dim(array_combined)) 
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5. Applying Functions 

Use apply() to apply functions along specific dimensions of an array. 

Example: Apply Function Across a Dimension 

R 

# Sum along rows for each layer 

row_sums <- apply(array_3d, c(1, 3), sum) 

print(row_sums) 

 

6. Common Functions for Arrays 

 dim(): Get or set the dimensions of an array. 

 dimnames(): Get or set dimension names. 

 array(): Create an array. 

 apply(): Apply a function along specific dimensions. 

 

7. Visualization 

Use visualization libraries like lattice or ggplot2 for higher-dimensional array data. Flatten data into a 

2D structure (e.g., using as.data.frame()) for plotting. 

 

Example: Higher-Dimensional Data Analysis 

R 

# Create a 4D array 

array_4d <- array(1:24, dim = c(3, 2, 2, 2)) 

print(array_4d) 

 

 

# Extract a 2D slice 

slice_2d <- array_4d[,,1,2] 

print(slice_2d) 

Arrays in R are versatile and extend the capabilities of matrices to higher dimensions, making them 

useful for multi-attribute data representation and manipulation. 

Lists 

Lists in R 

A list in R is a versatile data structure that can store elements of different types (e.g., numbers, strings, 

vectors, matrices, other lists). Unlike vectors or matrices, lists are heterogeneous, making them useful 

for grouping related but diverse data. 
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1. Creating Lists 

Use the list() function to create lists. 

Example: Creating a Simple List 

R 

# Create a list with different data types 

my_list <- list( 

  name = "Alice", 

  age = 30, 

  scores = c(85, 90, 78), 

  matrix = matrix(1:4, nrow = 2) 

) 

print(my_list) 

Output: 

$name 

 

[1] "Alice" 

 

$age 

[1] 30 

 

 

$scores 

[1] 85 90 78 

 

$matrix 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

 

2. General List Operations 

a. Naming Elements 

You can assign or modify names of list components. 

R 

names(my_list) <- c("Name", "Age", "Scores", "Matrix") 

 

print(my_list) 

b. Combining Lists 

Use c() to combine lists. 

R 

list1 <- list(a = 1, b = 2) 

 

list2 <- list(c = 3, d = 4) 

combined_list <- c(list1, list2) 
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print(combined_list) 

c. Length of a List 

The length() function returns the number of elements in a list. 

R 

print(length(my_list))  # Output: 4 

 

3. Accessing List Components and Values 

a. Using $ 

Access elements by name. 

R 

print(my_list$Name)  # Output: "Alice" 

**b. Using [[ ]] 

Access elements by index or name. 

R 

print(my_list[[1]])  # Output: "Alice" 

print(my_list[["Name"]])  # Output: "Alice" 

 

c. Using [ ] 

Returns a sublist, not the element itself. 

R 

print(my_list[1])  # Returns a list containing the first element 

d. Nested Access 

Access elements inside nested lists. 

R 

nested_list <- list(a = list(b = list(c = 5))) 

print(nested_list$a$b$c)  # Output: 5 

 

4. Applying Functions to Lists 

a. lapply() 

Applies a function to each element and returns a list. 

 

R 

# Square each element 

result <- lapply(my_list$scores, function(x) x^2) 

print(result) 
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b. sapply() 

Applies a function to each element and simplifies the output to a vector or matrix. 

 

R 

result <- sapply(my_list$scores, function(x) x^2) 

print(result) 

c. vapply() 

A safer version of sapply() with pre-specified output type. 

R 

result <- vapply(my_list$scores, function(x) x^2, numeric(1)) 

print(result) 

d. mapply() 

Applies a function to multiple list-like objects. 

R 

list1 <- list(1, 2, 3) 

list2 <- list(4, 5, 6) 

result <- mapply(function(x, y) x + y, list1, list2) 

print(result) 

 

5. Recursive Lists 

A recursive list (or nested list) is a list that contains other lists as elements. 

 

Example: Creating a Recursive List 

R 

recursive_list <- list( 

  a = list(x = 1, y = 2), 

  b = list(z = 3, w = list(p = 4, q = 5)) 

) 

print(recursive_list) 

Accessing Nested Components 

Use $ or [[ ]] repeatedly or in combination. 

R 

print(recursive_list$b$w$p)  # Output: 4 

print(recursive_list[[2]][[2]][["p"]])  # Output: 4 

 

6. Modifying Lists 

You can modify or extend lists by assigning values. 
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Add or Modify Elements 

R 

# Add a new element 

my_list$new_element <- "Hello" 

print(my_list) 

 

# Modify an existing element 

my_list$Age <- 31 

print(my_list) 

 

Remove Elements 

Set an element to NULL to remove it. 

R 

my_list$Scores <- NULL 

print(my_list) 

 

Summary 

 Lists can store heterogeneous data, including vectors, matrices, and other lists. 

 Access elements using $, [[ ]], or [ ]. 

 Use functions like lapply() and sapply() to apply operations to lists. 

 Recursive lists allow nested structures, enabling complex data representations. 

 

 

UNIT III 

  

Creating Data Frames – Matrix-like operations in frames – merging Data frames – 

Applying functions to Data Frames – Factors and Tables – Factors and levels – 

Common Functions used with factors – Working with tables – Other factors and table 

related functions – Control statements – Arithmetic and Boolean operators and values 

– Default Values for arguments – Returning Boolean Values – Functions are objects – 

Recursion 

 

Creating Data Frames 

In R, data frames are one of the most commonly used data structures for storing and manipulating 

tabular data. A data frame is essentially a collection of vectors of equal length, where each vector can 

be of a different data type (e.g., numeric, character, factor, etc.). Below are several ways to create data 

frames in R: 

1. Creating a Data Frame from Vectors 

You can create a data frame by combining vectors using the data.frame() function. 

# Create vectors 

name <- c("Alice", "Bob", "Charlie") 

age <- c(25, 30, 35) 
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height <- c(5.5, 6.0, 5.8) 

# Combine vectors into a data frame 

df <- data.frame(Name = name, Age = age, Height = height) 

# Print the data frame 

print(df) 

Output: 

     Name Age Height 

1   Alice  25    5.5 

2     Bob  30    6.0 

3 Charlie  35    5.8 

2. Creating a Data Frame from a List 

You can also create a data frame from a list of vectors. 

# Create a list of vectors 

my_list <- list(Name = c("Alice", "Bob", "Charlie")            

  Age = c(25, 30, 35), 

  Height = c(5.5, 6.0, 5.8)) 

# Convert the list to a data frame 

df <- data.frame(my_list) 

# Print the data frame 

print(df) 

Output: 

Name Age Height 

1   Alice  25    5.5 

2     Bob  30    6.0 

3 Charlie  35    5.8 

You can convert a matrix into a data frame using the as.data.frame() function. 
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# Create a matrix 

my_matrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3) 

# Convert the matrix to a data frame 

df <- as.data.frame(my_matrix) 

# Print the data frame 

print(df) 

Output: 

  V1 V2 V3 

1  1  3  5 

2  2  4  6 

4. Creating a Data Frame from External Data 

You can read data from external files (e.g., CSV, Excel) into a data frame using functions 

like read.csv() or read.table(). 

# Read a CSV file into a data frame 

df <- read.csv("path/to/your/file.csv") 

# Print the data frame 

print(df) 

   Name Age Height 

1   Alice  25    5.5 

2     Bob  30    6.0 

3 Charlie  35    5.8 

5. Creating an Empty Data Frame 

You can create an empty data frame and then add columns to it. 

# Create an empty data frame 

df <- data.frame() 

# Add columns to the data frame 

df$Name <- c("Alice", "Bob", "Charlie") 
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df$Age <- c(25, 30, 35) 

# Print the data frame 

print(df) 

 

Output: 

  Name Age 

1   Alice  25 

2     Bob  30 

3 Charlie  35 

6. Creating a Data Frame with tibble (from the tibble package) 

The tibble package provides a modern alternative to data frames. You can create a tibble using 

the tibble() function. 

# Install and load the tibble package 

install.packages("tibble") 

library(tibble) 

# Create a tibble 

df <- tibble(Name = c("Alice", "Bob", "Charlie"), 

             Age = c(25, 30, 35)       

  Height = c(5.5, 6.0, 5.8)) 

# Print the tibble 

print(df) 

Output: 

# A tibble: 3 × 3 

  Name     Age Height 

  <chr>  <dbl>  <dbl> 

1 Alice     25    5.5 

2 Bob       30    6   
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3 Charlie   35    5.8 

The data.table package provides an enhanced version of data frames. You can create a data table using 

the data.table() function. 

 

# Install and load the data.table package 

install.packages("data.table") 

library(data.table) 

# Create a data table 

dt <- data.table(Name = c("Alice", "Bob", "Charlie"), 

                 Age = c(25, 30, 35), 

                 Height = c(5.5, 6.0, 5.8)) 

# Print the data table 

print(dt) 

Output 

     Name Age Height 

1:   Alice  25    5.5 

2:     Bob  30    6.0 

3: Charlie  35    5.8 

Summary 

 Use data.frame() to create a data frame from vectors or a list. 

 Use as.data.frame() to convert a matrix to a data frame. 

 Use read.csv() or read.table() to read external data into a data frame. 

 Use tibble() from the tibble package for a modern alternative to data frames. 

 Use data.table() from the data.table package for enhanced data frames. 

These methods provide flexibility in creating and manipulating data frames in R, depending on  

specific needs. 

Matrix-like operations in frames 

In R, data frames are designed to store tabular data, similar to matrices, but with the added flexibility 

of allowing columns to contain different data types (e.g., numeric, character, factor). While data frames 

are not matrices, you can perform matrix-like operations on them by converting them to matrices or 

using specific functions that work with data frames. Below are some common matrix-like operations  

can be performed on data frames in R: 
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1. **Convert a Data Frame to a Matrix** 

To perform matrix operations, you can convert a data frame to a matrix using the `as.matrix()` 

function. Note that all columns must be of the same data type (e.g., numeric) for this to work properly. 

# Create a data frame 

df <- data.frame(A = c(1, 2, 3), B = c(4, 5, 6), C = c(7, 8, 9)) 

# Convert to a matrix 

mat <- as.matrix(df) 

# Print the matrix 

print(mat) 

Output: 

  A B C 

[1,] 1 4 7 

[2,] 2 5 8 

[3,] 3 6 9 

2. **Matrix-like Operations on Data Frames** 

Even without converting to a matrix, you can perform some matrix-like operations directly on data 

frames. 

 **Transpose a Data Frame** 

Use the `t()` function to transpose a data frame. Note that the result will be a matrix, not a data frame. 

# Transpose the data frame 

transposed_df <- t(df) 

# Print the transposed result 

print(transposed_df) 

Output: 

  [,1] [,2] [,3] 

A    1    2    3 

B    4    5    6 

C    7    8    9 

**Row and Column Sums** 

Use `rowSums()` and `colSums()` to calculate sums of rows and columns, respectively. 

# Column sums 

col_sums <- colSums(df) 

# Row sums 

row_sums <- rowSums(df) 
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print(col_sums) 

print(row_sums) 

Output: 

A  B  C  

6 15 24  

[1] 12 15 18 

#### **Row and Column Means** 

Use `rowMeans()` and `colMeans()` to calculate means of rows and columns, respectively. 

# Column means 

col_means <- colMeans(df) 

# Row means 

row_means <- rowMeans(df) 

print(col_means) 

print(row_means) 

Output: 

A B C  

2 5 8  

[1] 4 5 6 

### 3. **Subsetting Data Frames (Similar to Matrix Indexing)** 

You can subset data frames using row and column indices, similar to matrix indexing. 

# Subset the first two rows and columns 

subset_df <- df[1:2, 1:2] 

print(subset_df) 

Output: 

  A B 

1 1 4 

2 2 5 

### 4. **Matrix Multiplication** 

To perform matrix multiplication, convert the data frame to a matrix and use the `%*%` operator. 

# Create two data frames 

df1 <- data.frame(A = c(1, 2), B = c(3, 4)) 

df2 <- data.frame(C = c(5, 6), D = c(7, 8)) 

# Convert to matrices 

mat1 <- as.matrix(df1) 



 
73 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

mat2 <- as.matrix(df2) 

# Perform matrix multiplication 

result <- mat1 %*% mat2 

print(result) 

Output: 

     C  D 

[1,] 23 31 

[2,] 34 46 

### 5. **Element-wise Operations** 

You can perform element-wise operations (e.g., addition, subtraction, multiplication) on data frames, 

similar to matrices. 

# Create two data frames 

df1 <- data.frame(A = c(1, 2, 3), B = c(4, 5, 6)) 

df2 <- data.frame(A = c(7, 8, 9), B = c(10, 11, 12)) 

 

# Element-wise addition 

result <- df1 + df2 

print(result) 

Output: 

  A  B 

1 8 14 

2 10 16 

3 12 18 

### 6. **Apply Functions to Rows or Columns** 

Use the `apply()` function to apply a function to rows or columns of a data frame. 

# Apply the sum function to columns 

col_sums <- apply(df, 2, sum) 

 

# Apply the sum function to rows 

row_sums <- apply(df, 1, sum) 

print(col_sums) 

print(row_sums) 

Output: 

A  B  C  
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6 15 24  

[1] 12 15 18 

 

### 7. **Diagonal Operations** 

If your data frame is square (same number of rows and columns), you can extract or modify the 

diagonal using the `diag()` function. 

# Extract the diagonal 

diagonal <- diag(as.matrix(df)) 

print(diagonal) 

Output: 

 [1] 1 5 9 

### 8. **Using `dplyr` for Matrix-like Operations** 

The `dplyr` package provides a powerful set of tools for manipulating data frames. While not strictly 

matrix-like, it allows for similar operations in a more user-friendly way. 

# Install and load dplyr 

install.packages("dplyr") 

library(dplyr) 

# Create a data frame 

 

df <- data.frame(A = c(1, 2, 3), B = c(4, 5, 6), C = c(7, 8, 9)) 

# Calculate row sums using dplyr 

df <- df %>% mutate(RowSum = rowSums(.)) 

print(df) 

Output: 

  A B C RowSum 

1 1 4 7     12 

2 2 5 8     15 

3 3 6 9     18 

### Summary 

- Use `as.matrix()` to convert a data frame to a matrix for matrix-specific operations. 

- Perform matrix-like operations (e.g., transposition, row/column sums, matrix multiplication) on data 

frames. 

 

- Use `apply()` for applying functions to rows or columns. 

- Use `dplyr` for advanced data frame manipulations. 
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These techniques allow to work with data frames in a way that mimics matrix operations while 

retaining the flexibility of data frames. 

 

 

 

 

MERGING DATA FRAMES 

 

Merging data frames is a common operation in R, especially when working with datasets that need to 

be combined based on shared columns or keys. R provides several functions to merge data frames, 

including `merge()`, `dplyr` functions, and `data.table` methods. Below are the most common ways to 

merge data frames in R: 

### 1. **Using `merge()`** 

The `merge()` function is a base R function for combining two data frames based on common 

columns (keys). 

#### **Basic Syntax** 

merge(x, y, by = "key_column", all = FALSE, all.x = FALSE, all.y = FALSE) 

- `x`, `y`: The data frames to merge. 

- `by`: The column(s) to merge by (common key). 

- `all`: If `TRUE`, includes all rows from both data frames (full outer join). 

- `all.x`: If `TRUE`, includes all rows from `x` (left outer join). 

- `all.y`: If `TRUE`, includes all rows from `y` (right outer join). 

#### **Example** 

# Create two data frames 

df1 <- data.frame(ID = c(1, 2, 3), Name = c("Alice", "Bob", "Charlie")) 

df2 <- data.frame(ID = c(2, 3, 4), Age = c(25, 30, 35)) 

 

# Merge by the "ID" column (inner join by default) 

 

merged_df <- merge(df1, df2, by = "ID") 

print(merged_df) 

Output: 

  ID    Name Age 

1  2     Bob  25 

2  3 Charlie  30 

#### **Types of Joins with `merge()`** 



 
76 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

- **Inner Join**: Only rows with matching keys in both data frames. 

  merge(df1, df2, by = "ID") 

- **Left Join**: All rows from `df1` and matching rows from `df2`. 

  merge(df1, df2, by = "ID", all.x = TRUE) 

- **Right Join**: All rows from `df2` and matching rows from `df1`. 

  merge(df1, df2, by = "ID", all.y = TRUE) 

-  

**Full Outer Join**: All rows from both data frames. 

  merge(df1, df2, by = "ID", all = TRUE) 

  ### 2. **Using `dplyr` for Merging** 

The `dplyr` package provides a more intuitive and readable way to merge data frames using functions 

like `left_join()`, `right_join()`, `inner_join()`, and `full_join()`. 

#### **Install and Load `dplyr`** 

install.packages("dplyr") 

library(dplyr) 

#### **Example** 

# Create two data frames 

df1 <- data.frame(ID = c(1, 2, 3), Name = c("Alice", "Bob", "Charlie")) 

df2 <- data.frame(ID = c(2, 3, 4), Age = c(25, 30, 35)) 

# Left join 

left_joined <- left_join(df1, df2, by = "ID") 

 

# Right join 

right_joined <- right_join(df1, df2, by = "ID") 

# Inner join 

inner_joined <- inner_join(df1, df2, by = "ID") 

# Full join 

full_joined <- full_join(df1, df2, by = "ID") 

print(left_joined) 

print(right_joined) 

 

print(inner_joined) 

print(full_joined) 

Output: 
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# Left Join 

  ID    Name Age 

1  1   Alice  NA 

2  2     Bob  25 

3  3 Charlie  30 

# Right Join 

  ID    Name Age 

1  2     Bob  25 

2  3 Charlie  30 

3  4    <NA>  35 

# Inner Join 

 

  ID    Name Age 

1  2     Bob  25 

2  3 Charlie  30 

# Full Join 

  ID    Name Age 

1  1   Alice  NA 

2  2     Bob  25 

3  3 Charlie  30 

4  4    <NA>  35 

### 3. **Using `data.table` for Merging** 

The `data.table` package provides a fast and efficient way to merge data frames. 

#### **Install and Load `data.table`** 

install.packages("data.table") 

library(data.table) 

#### **Example** 

# Convert data frames to data.tables 

 

 

dt1 <- as.data.table(df1) 

dt2 <- as.data.table(df2) 

# Merge using data.table syntax 

merged_dt <- merge(dt1, dt2, by = "ID", all = TRUE) 
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print(merged_dt) 

 

Output: 

   ID    Name Age 

1:  1   Alice  NA 

2:  2     Bob  25 

3:  3 Charlie  30 

4:  4    <NA>  35 

# 4. **Merging on Multiple Columns** 

You can merge data frames on multiple columns by passing a vector of column names to the `by` 

argument. 

#### **Example** 

# Create data frames with multiple keys 

df1 <- data.frame(ID = c(1, 2, 3), Year = c(2021, 2022, 2023), Value = c(10, 20, 30)) 

df2 <- data.frame(ID = c(1, 2, 3), Year = c(2021, 2022, 2023), Score = c(100, 200, 300)) 

# Merge on multiple columns 

merged_df <- merge(df1, df2, by = c("ID", "Year")) 

print(merged_df) 

 

Output: 

 ID Year Value Score 

1  1 2021    10   100 

2  2 2022    20   200 

3  3 2023    30   300 

### 5. **Handling Non-Matching Column Names** 

If the key columns have different names in the two data frames, you can use the `by.x` and `by.y` 

arguments in `merge()`. 

#### **Example** 

# Create data frames with different key column names 

df1 <- data.frame(ID1 = c(1, 2, 3), Name = c("Alice", "Bob", "Charlie")) 

df2 <- data.frame(ID2 = c(2, 3, 4), Age = c(25, 30, 35)) 

# Merge using different key column names 
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merged_df <- merge(df1, df2, by.x = "ID1", by.y = "ID2") 

print(merged_df) 

Output: 

  ID1    Name Age 

1   2     Bob  25 

2   3 Charlie  30 

### Summary 

 

- Use `merge()` for basic merging operations in base R. 

- Use `dplyr` functions (`left_join()`, `right_join()`, etc.) for more readable and intuitive merging. 

- Use `data.table` for fast and efficient merging, especially with large datasets. 

- Merge on multiple columns by passing a vector of column names to the `by` argument. 

- Handle non-matching column names using `by.x` and `by.y`. 

These methods provide flexibility for combining data frames in R, depending on your specific needs. 

Applying functions to Data Frames 

In R, you can apply functions to DataFrames (which are typically represented as `data.frame` or 

`tibble` objects) in various ways depending on what you want to achieve. Below are some common 

methods for applying functions to DataFrames: 

### 1. **Applying a Function to Each Column or Row** 

   - **`apply()`**: Apply a function to the rows or columns of a DataFrame. 

     # Example: Calculate the mean of each column 

     df <- data.frame(a = 1:5, b = 6:10, c = 11:15) 

     apply(df, 2, mean)  # 2 means apply to columns 

     - `1` applies the function to rows. 

     - `2` applies the function to columns. 

  

  - **`sapply()`**: Simplifies the result of applying a function to each column. 

     sapply(df, mean) 

   - **`lapply()`**: Returns a list after applying a function to each column. 

     lapply(df, mean) 

   - **`rowMeans()`, `rowSums()`, `colMeans()`, `colSums()`**: Specialized functions for 

row/column operations. 

     rowMeans(df) 

     colSums(df) 
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### 2. **Applying a Function to Subsets of a DataFrame** 

   - **`tapply()`**: Apply a function to subsets of a vector based on a factor. 

     df <- data.frame(group = c("A", "A", "B", "B"), value = c(1, 2, 3, 4)) 

     tapply(df$value, df$group, mean) 

   - **`aggregate()`**: Apply a function to subsets of a DataFrame. 

     aggregate(value ~ group, data = df, mean) 

   - **`by()`**: Apply a function to subsets of a DataFrame. 

     by(df, df$group, function(x) mean(x$value)) 

 

### 3. **Applying a Function to Each Element** 

   - **`mapply()`**: Apply a function to multiple vectors or lists element-wise. 

     mapply(function(x, y) x + y, df$a, df$b) 

        - **`Map()`**: Similar to `mapply()` but returns a list. 

     Map(function(x, y) x + y, df$a, df$b) 

      

### 4. **Using `dplyr` for DataFrame Operations** 

   The `dplyr` package provides a more intuitive and efficient way to work with DataFrames. 

   - **`mutate()`**: Apply a function to create or modify columns. 

     library(dplyr) 

     df <- df %>% mutate(new_col = a + b) 

   - **`summarize()`**: Apply a function to summarize data. 

     df %>% summarize(mean_a = mean(a), mean_b = mean(b)) 

   - **`group_by()` + `summarize()`**: Apply a function to grouped data. 

          df %>% group_by(group) %>% summarize(mean_value = mean(value)) 

   - **`across()`**: Apply a function to multiple columns. 

     df %>% summarize(across(everything(), mean)) 

### 5. **Using `purrr` for Functional Programming** 

   The `purrr` package provides tools for functional programming. 

 

   - **`map()`**: Apply a function to each column. 

     library(purrr) 

     map(df, mean) 

   - **`map_dfr()`**: Apply a function and return a DataFrame. 
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  map_dfr(df, ~ .x * 2) 

### 6. **Custom Functions** 

   You can define your own functions and apply them to DataFrames. 

   my_function <- function(x) { 

     x * 2 

   } 

   df <- df %>% mutate(new_col = my_function(a)) 

### Example: Combining Methods 

# Create a DataFrame 

df <- data.frame(a = 1:5, b = 6:10, c = 11:15) 

# Apply a custom function to each column 

df <- df %>% mutate(across(everything(), ~ .x * 2)) 

 

# Summarize the DataFrame 

df %>% summarize(across(everything(), list(mean = mean, sum = sum))) 

This will double each value in the DataFrame and then calculate the mean and sum for each column. 

These are some of the most common ways to apply functions to DataFrames in R. The choice of 

method depends on the specific task and the structure of your data. 

Factors and Tables 

In R, factors and tables are essential concepts that help in managing categorical data.  

1. Factors 

Factors in R are used to represent categorical data. They are R's way of handling variables that have a 

fixed number of unique values or levels. For example, a "Gender" variable with values "Male" and 

"Female" can be represented as a factor. Factors are useful because they store both the values and the 

underlying levels, which makes them efficient when working with categorical data. 

Creating a Factor 

You can create a factor using the factor() function. For example: 

r 

Copy 

gender <- factor(c("Male", "Female", "Female", "Male")) 

print(gender) 

This creates a factor variable gender with two levels: Male and Female. 
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Levels of a Factor 

You can access the levels of a factor using the levels() function: 

r 

Copy 

levels(gender)  # Shows "Male" and "Female" 

Changing Factor Levels 

You can also modify the levels of a factor: 

r 

Copy 

gender <- factor(c("Male", "Female", "Female", "Male"), levels = c("Male", "Female")) 

2. Tables 

In R, a table is an object that shows the frequency of each category in a factor or vector. You can 

create a table using the table() function. A table is essentially a contingency table, where each element 

represents the count of occurrences of a particular level of a factor. 

Creating a Table from a Factor 

Here’s how you can create a frequency table from a factor: 

r 

Copy 

table(gender) 

This will output the number of occurrences of each level of the gender factor: 

markdown 

Copy 

Female   Male  

    2      2 

Creating a Table from a Vector 

You can also create a table from a general vector, not just a factor: 

r 

Copy 

ages <- c(23, 34, 23, 45, 34, 23, 45, 45, 23) 

table(ages) 

This will display the frequency of each unique age: 

Copy 

23  34  45  

4   2   3 
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Cross-tabulation (Contingency Table) 

You can create a cross-tabulation using two categorical variables (factors): 

r 

Copy 

education <- factor(c("High School", "College", "College", "High School", "College")) 

 

 

table(gender, education) 

This will show how many males and females have each level of education. 

Table Summary 

You can also summarize a table by using the summary() function: 

r 

Copy 

summary(table(gender)) 

Example combining both: 

r 

Copy 

# Creating factors 

gender <- factor(c("Male", "Female", "Female", "Male")) 

education <- factor(c("High School", "College", "College", "High School")) 

 

# Create a table (contingency table) 

table(gender, education) 

This would give a 2x2 table showing the cross-tabulation of gender vs. education. 

Key Points: 

 Factors store categorical data and represent both the values and their levels. 

 Tables summarize the frequency distribution of categorical data, helping in visualizing the 

count of occurrences. 

Common Functions used with factors in R 

When working with factors in R, there are several common functions you can use to manage, analyze, 

and modify categorical data. Here's a list of useful functions for factors and what they do: 

1. factor() 

The primary function to create a factor from a vector or other data type. 

r 

Copy 

# Create a factor from a character vector 

gender <- factor(c("Male", "Female", "Female", "Male")) 
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2. levels() 

Returns the levels of a factor, i.e., the distinct categories or values that the factor can take. 

r 

Copy 

levels(gender)  # Returns "Male" "Female" 

You can also set the levels of a factor using the levels() function: 

r 

 

 

Copy 

levels(gender) <- c("Male", "Female") 

 

3. nlevels() 

Returns the number of levels in a factor. 

r 

Copy 

nlevels(gender)  # Returns 2 

4. summary() 

Provides a summary of a factor or a table, showing the frequency of each level. 

r 

Copy 

summary(gender) 

This will give you the count of each level: 

markdown 

Copy 

 

 Female   Male  

     2      2 

5. table() 

Creates a frequency table showing the count of each level in a factor or vector. 

r 

Copy 

table(gender) 

This will return the count of each category: 

markdown 
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Copy 

 Female   Male  

     2      2 

You can also use table() to create cross-tabulations (contingency tables) with two or more factors: 

r 

Copy 

education <- factor(c("High School", "College", "College", "High School")) 

table(gender, education) 

6. as.factor() 

Converts an object (such as a character vector or numeric vector) into a factor. 

r 

 

 

age_group <- c("Young", "Middle-aged", "Old", "Young", "Middle-aged") 

age_factor <- as.factor(age_group) 

7. as.character() 

Converts a factor back to a character vector. 

r 

Copy 

gender_char <- as.character(gender) 

8. relevel() 

Changes the reference level of a factor. This is especially useful in statistical modeling when you want 

to set a specific reference category. 

r 

Copy 

education <- factor(c("High School", "College", "College", "High School")) 

education <- relevel(education, ref = "College")  # Set "College" as the reference level 

 

9. levels<- (assignment operator) 

This allows you to directly modify the levels of a factor. 

r 

Copy 

# Change levels of a factor 

levels(gender) <- c("Male", "Female", "Other") 

10. droplevels() 

Drops unused levels from a factor. It’s useful when you subset a factor, and there are levels that are no 

longer present. 
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r 

Copy 

# Remove unused levels from a factor 

gender_sub <- gender[gender == "Female"] 

gender_sub <- droplevels(gender_sub) 

11. contrasts() 

Returns or sets the contrasts used in a factor for modeling purposes. This is more relevant for 

advanced statistical analysis and modeling. 

r 

Copy 

contrasts(gender)  # Show contrasts for the 'gender' factor 

12. levels() vs labels() 

 levels() gives the raw level names. 

 labels() can be used for labeled factors (especially useful with ordered factors). 

 

r 

Copy 

# Ordered factor example 

education_ordered <- factor(c("High School", "College", "Graduate"), 

                            levels = c("High School", "College", "Graduate"), 

                         

    ordered = TRUE) 

levels(education_ordered) 

13. ordered() 

Creates an ordered factor, which is useful when the categories have a natural ordering (e.g., "Low", 

"Medium", "High"). 

r 

Copy 

satisfaction <- factor(c("Low", "High", "Medium", "Medium", "High"),  

                       levels = c("Low", "Medium", "High"), ordered = TRUE) 

 

14. addNA() 

This function is used to add a NA level to a factor. 

r 

Copy 

gender_with_na <- addNA(gender) 

15. factor() with exclude argument 

You can use the exclude argument to specify certain levels that should be excluded from the factor. 
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r 

Copy 

# Exclude a specific value (e.g., "Male") from the factor 

gender <- factor(c("Male", "Female", "Female", "Male"), exclude = "Male") 

 

Example of Working with Factors 

Here’s a practical example that demonstrates how these functions might be used: 

r 

Copy 

# Step 1: Create a factor 

gender <- factor(c("Male", "Female", "Female", "Male")) 

 

# Step 2: Display levels 

print(levels(gender))  # "Male" "Female" 

 

# Step 3: Count levels 

print(nlevels(gender))  # 2 

 

# Step 4: Convert factor to character 

gender_char <- as.character(gender) 

print(gender_char) 

 

# Step 5: Relevel the factor (change reference level) 

 

gender <- relevel(gender, ref = "Female") 

print(gender) 

 

# Step 6: Create a frequency table 

print(table(gender)) 

 

# Step 7: Drop unused levels 

 

gender_sub <- gender[gender == "Female"] 

gender_sub <- droplevels(gender_sub) 

print(gender_sub) 

Conclusion 

These functions are foundational when working with factors in R. Whether you are preparing data for 

statistical modeling or simply summarizing categorical data, knowing how to manipulate and 

summarize factors will make your analysis much easier. 

 

Working with tables 

In R, tables are a fundamental way to summarize and analyze categorical data. A table is an object 

that represents the frequency distribution of a factor or vector. Tables are created using the table() 

function, and there are several other functions and methods for manipulating and working with tables. 

Here's a guide on how to work with tables in R. 
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1. Creating a Table using table() 

The table() function creates a table (also called a frequency table or contingency table) by counting 

the number of occurrences of each unique value in a vector or factor. 

Example 1: Table for a Single Factor 

r 

Copy 

# Create a vector with categorical data 

gender <- c("Male", "Female", "Female", "Male", "Female", "Male") 

 

# Create a frequency table 

gender_table <- table(gender) 

print(gender_table) 

Output: 

markdown 

Copy 

gender 

Female   Male  

     3      3 

This table tells you how many "Female" and "Male" values are in the gender vector. 

Example 2: Table for Multiple Factors (Cross-Tabulation) 

You can use table() with two or more vectors (factors) to create a cross-tabulation (contingency table). 

This shows how the categories of two factors are related. 

 

r 

Copy 

# Create another factor (education) 

education <- c("College", "High School", "College", "High School", "College", "High School") 

 

# Create a cross-tabulation between gender and education 

gender_education_table <- table(gender, education) 

print(gender_education_table) 

Output: 

markdown 

Copy 

        education 

gender    College High School 

  Female        2          1 

  Male          1          2 

This table shows the count of females and males in each education category. 

2. Accessing Elements of a Table 
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Once a table is created, you can access specific elements or perform operations on it. 

 

Access a specific cell in the table 

To access a specific count from a table (e.g., the count of "Female" and "College"), use the [] 

indexing. 

r 

Copy 

# Access the count of "Female" and "College" 

gender_education_table["Female", "College"]  # Returns 2 

Convert a Table to a Data Frame 

You can convert a table to a data frame for easier manipulation or to work with other R functions that 

require data frames. 

r 

Copy 

# Convert the table to a data frame 

gender_education_df <- as.data.frame(gender_education_table) 

print(gender_education_df) 

Output: 

nginx 

Copy 

  gender    education Freq 

1 Female     College    2 

2 Female High School    1 

3   Male     College    1 

4   Male High School    2 

3. Using addmargins() 

The addmargins() function is used to add margin totals (row sums and column sums) to the table. This 

is useful for getting the total counts for each row and column. 

r 

Copy 

# Add margin totals (row sums and column sums) 

gender_education_with_margins <- addmargins(gender_education_table) 

print(gender_education_with_margins) 

Output: 

mathematica 

Copy 

        education 

gender    College High School Sum 

  Female        2          1   3 

  Male          1          2   3 

  Sum           3          3   6 
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4. Using prop.table() for Proportions 

The prop.table() function calculates the proportions (relative frequencies) of each cell in the table, 

based on the total sum or along the rows/columns. 

Example: Proportions across the entire table 

r 

Copy 

# Proportions across the entire table 

gender_education_proportions <- prop.table(gender_education_table) 

print(gender_education_proportions) 

Output: 

markdown 

Copy 

        education 

gender    College High School 

  Female 0.3333333 0.1666667 

  Male   0.1666667 0.3333333 

This shows the proportion of each combination of gender and education category. 

Example: Proportions by rows 

You can also calculate row-wise proportions by passing the margin = 1 argument to prop.table(), 

which normalizes the table by rows. 

r 

Copy 

# Proportions by rows 

gender_education_row_proportions <- prop.table(gender_education_table, margin = 1) 

 

print(gender_education_row_proportions) 

Output: 

markdown 

Copy 

        education 

gender    College High School 

  Female 0.6666667 0.3333333 

  Male   0.3333333 0.6666667 

This normalizes the table so that the proportions in each row sum to 1. 

5. Using ftable() for Flat Tables 

The ftable() function can be used to create flat tables (fancy tables) that make it easier to view multi-

dimensional tables in a compact format. 

r 

Copy 



 
91 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

# Create a flat table (for better visualization of a multi-dimensional table) 

gender_education_flat <- ftable(gender, education) 

print(gender_education_flat) 
Output: 

markdown 

Copy 

        education 

gender   College High School 

  Female        2          1 

  Male          1          2 

6. Table Manipulation with dplyr 

The dplyr package allows for easy manipulation of tables as well, especially when you convert tables 

to data frames. 

Example: Using dplyr to summarize a table 

r 

Copy 

library(dplyr) 

 

# Convert table to data frame 

gender_education_df <- as.data.frame(gender_education_table) 

 

# Summarize data using dplyr 

gender_education_df %>% 

  group_by(gender) %>% 

  summarize(total = sum(Freq)) 

Output: 

csharp 

Copy 

# A tibble: 2 × 2 

  gender total 

  <fct>  <int> 

1 Female     3 

2 Male       3 

 

 
7. Handling Missing Data 

If your data has NA values, table() will count them as a separate level. You can handle missing values 

by using exclude to remove NA values from the table. 

r 

Copy 

# Create a vector with NAs 

data_with_na <- c("Male", "Female", "Male", NA, "Female") 

 

# Create a table excluding NAs 

table_without_na <- table(data_with_na, exclude = NA) 

print(table_without_na) 
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Output: 

markdown 

Copy 

data_with_na 

Female   Male  

     2      2 

Summary of Common Table Functions: 

 table(): Create a frequency or contingency table. 

 addmargins(): Add margin totals to a table (row/column sums). 

 prop.table(): Calculate proportions based on the table. 

 ftable(): Convert a multi-dimensional table into a flat, easy-to-read format. 

 as.data.frame(): Convert a table into a data frame for further manipulation. 

 

 summary(): Provides a summary of the table. 

 exclude in table(): Exclude NA values or specific values from a table. 

Conclusion: 

Tables are a powerful tool in R for summarizing categorical data. They allow you to easily calculate 

frequencies, proportions, and cross-tabulations. By using functions like table(), addmargins(), and 

prop.table(), you can explore your data and gain meaningful insights. 

Other factors and table related functions 

In R, tables and factors are essential for data manipulation and statistical analysis. Here's an overview 

of some common functions related to factors and tables, as well as other operations you might use: 

Factors in R 

Factors are used to represent categorical variables. They store both the values of a categorical variable 

and the set of possible levels. 

Key functions for working with factors: 

1. factor(): Creates a factor from a vector. 

R 

 

Copy 

x <- c("low", "medium", "high", "medium") 

f <- factor(x) 

print(f) 

2. levels(): Returns or sets the levels of a factor. 

R 

Copy 

levels(f) 
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3. table(): Creates a frequency table of a factor or vector. 

R 

Copy 

 

table(f) 

4. as.factor(): Coerces a vector into a factor. 

R 

Copy 

x <- c("red", "blue", "blue", "green") 

f <- as.factor(x) 

5. nlevels(): Returns the number of levels of a factor. 

R 

Copy 

nlevels(f) 

6. relevel(): Reorders the levels of a factor, making the specified level the reference. 

 

R 

Copy 

f <- relevel(f, ref = "high") 

7. levels<-: Modify the levels of a factor. 

R 

Copy 

levels(f) <- c("low", "medium", "high") 

8. ordered(): Converts a factor into an ordered factor. 

R 

Copy 

f_ordered <- factor(x, ordered = TRUE, levels = c("low", "medium", "high")) 

 

Working with Tables in R 

Tables are a great way to summarize categorical data, especially with the table() function. 

 

 

Key table functions: 

table(): Creates a contingency table from a vector, matrix, or data frame. 

R 

Copy 
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data <- c("apple", "banana", "apple", "banana", "orange") 

table(data) 

1. addmargins(): Adds margin sums (like row and column totals) to a table. 

R 

Copy 

tab <- table(c("A", "A", "B", "B", "C")) 

addmargins(tab) 

2. prop.table(): Converts a table to proportions (relative frequencies). 

R 

 

Copy 

prop.table(table(data)) 

3. ftable(): Creates a flat contingency table (more readable than multi-dimensional arrays). 

R 

Copy 

ftable(mtcars$mpg, mtcars$cyl) 

4. table() with useNA parameter: Can be used to include or exclude missing values (NA). 

R 

Copy 

data <- c("apple", "banana", NA, "orange", "banana", NA) 

table(data, useNA = "ifany") 

 

 

Other Useful Table-Related Functions 

1. xtabs(): Creates contingency tables from a formula and data frame. 

R 

Copy 

data(mtcars) 

xtabs(~ cyl + gear, data = mtcars) 

2. dplyr::count(): A dplyr function that counts occurrences of distinct combinations of factor 

levels. 

R 

Copy 

library(dplyr) 

count(mtcars, cyl, gear) 

3. summary(): Provides a summary for factors, vectors, and tables. 
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R 

Copy 

summary(f) 

summary(mtcars) 

4. aggregate(): Computes summary statistics by group. 

R 

Copy 

aggregate(mpg ~ cyl, data = mtcars, FUN = mean) 

5. melt() and dcast() from the reshape2 package: Used to reshape data (wide to long format 

and vice versa). 

R 

Copy 

library(reshape2) 

molten_data <- melt(mtcars) 

dcast(molten_data, variable ~ value) 

Example: Analyzing Categorical Data with Tables 

Let’s say you have the following data about fruit preference among a group of people: 

R 

Copy 

# Example data 

fruit <- c("apple", "banana", "orange", "banana", "apple", "apple") 

1. Create a table of counts: 

R 

Copy 

fruit_table <- table(fruit) 

 

print(fruit_table) 

2. Proportions: 

R 

Copy 

prop.table(fruit_table) 

3. Add margins (totals): 

R 

Copy 

addmargins(fruit_table) 

Conclusion 
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These functions allow for flexible handling of categorical data and summarization in R. 

Understanding and manipulating factors and tables effectively helps in preparing data for analysis, 

performing statistical tests, and interpreting results. 

 

 

 

 

 

CONTROL STATEMENTS 

In R, control statements are used to control the flow of execution based on certain conditions. The 

basic control structures in R are if, else, ifelse, for, while, and repeat loops. These structures allow you 

to make decisions and repeat actions in your programs. 

Here’s an overview of key control statements in R: 

1. if Statement 

The if statement allows you to execute code only when a condition is true. 

R 

Copy 

x <- 10 

if (x > 5) { 

  print("x is greater than 5") 

} 

In this example, the code inside the if block will execute because x > 5. 

2. else Statement 

The else statement follows an if and is executed when the if condition is false. 

R 

Copy 

x <- 3 

if (x > 5) { 

  print("x is greater than 5") 

} else { 

  print("x is not greater than 5") 

} 

 

 

Here, the code inside the else block runs because x is not greater than 5. 

3. else if Statement 
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If you have multiple conditions to check, you can chain else if statements after an initial if. Only one 

block will execute based on the conditions. 

R 

Copy 

x <- 7 

if (x > 10) { 

  print("x is greater than 10") 

} else if (x > 5) { 

  print("x is greater than 5 but less than or equal to 10") 

 

 

} else { 

  print("x is less than or equal to 5") 

} 

In this case, the else if condition is true, so it prints "x is greater than 5 but less than or equal to 10". 

4. ifelse() Function 

The ifelse() function is a vectorized version of the if statement. It is used to test a condition and 

returns one value if true, another value if false. 

R 

Copy 

x <- 10 

result <- ifelse(x > 5, "Greater than 5", "Less than or equal to 5") 

print(result) 

This will return "Greater than 5" because x is greater than 5. 

 

5. for Loop 

The for loop is used to iterate over a sequence (such as a vector, list, or range of numbers). 

R 

Copy 

for (i in 1:5) { 

  print(paste("Iteration", i)) 

} 

This loop prints the statement "Iteration 1", "Iteration 2", and so on, until i reaches 5. 

 

6. while Loop 

The while loop continues to execute as long as a condition is TRUE. Be careful not to create infinite 

loops! 

R 
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Copy 

x <- 1 

while (x <= 5) { 

  print(paste("x is", x)) 

 

  x <- x + 1 

} 

This will print values of x from 1 to 5. 

7. repeat Loop 

The repeat loop is similar to a while loop but does not evaluate the condition until the end of each 

iteration. It is typically used with a break statement to stop the loop. 

 

 

R 

Copy 

x <- 1 

repeat { 

  print(paste("x is", x)) 

  x <- x + 1 

  if (x > 5) { 

    break 

  } 

} 

This will print values of x from 1 to 5, and the loop stops once x exceeds 5 due to the break statement. 

8. break Statement 

The break statement is used to exit a loop prematurely, usually when a certain condition is met. 

 

 

R 

Copy 

for (i in 1:10) { 

   

if (i == 6) { 

    break 

  } 

  print(i) 

} 

This will print numbers from 1 to 5 and then break out of the loop when i is 6. 

9. next Statement 

The next statement is used to skip the current iteration of a loop and move on to the next one. 

R 
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Copy 

for (i in 1:5) { 

  if (i == 3) { 

 

    next 

  } 

  print(i) 

} 

This will print 1, 2, 4, and 5, skipping the iteration where i is 3. 

Example: Combining Control Statements Here’s an example that combines several control 

statements: 

R 

Copy 

x <- 10 

 

# Using if-else to check a condition 

if (x > 5) { 

  print("x is greater than 5") 

   

  # Using a for loop to print numbers 

  

 

 for (i in 1:3) { 

    print(i) 

     

    # Break if i equals 2 

    if (i == 2) { 

      break 

    } 

  } 

} else { 

  print("x is less than or equal to 5") 

} 

In this example, the program checks if x > 5, prints numbers using a for loop, and breaks out of the 

loop when i is 2. 

Summary of Control Structures: 

 if: Conditionally execute a block of code. 

 else: Execute code when the if condition is false. 

 else if: Chain multiple conditions. 

 ifelse(): Vectorized if-else logic. 

 for loop: Iterate over a sequence. 

 while loop: Loop while a condition is true. 

 repeat loop: Loop until manually interrupted with break. 

 

 break: Exit a loop. 
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 next: Skip to the next iteration in a loop.These control structures help to make your R 

programs flexible and dynamic.  

UNIT IV: Classes in R 

S3 Classes – S4 Classes – Managing your objects – Input/output – accessing keyboard and 

monitor – reading and writing files – accessing the internet – String Manipulation – Graphics 

– Creating Graphs– Customizing Graphs – Saving Graphs to files – Creating Three-

Dimensional plots 

 

This unit focuses on the concept of classes, object management, input and output handling,  

string manipulation, graphics, and plotting in R. R is not just a statistical computing tool;  

it is also a functional and object-oriented programming language. Understanding classes  

and data structures is key to organizing and managing code efficiently. 

 

 

S3 CLASSES 

S3 classes are the simplest and most common form of object-oriented system in R. They provide  

a flexible way to define how functions behave for different kinds of objects. S3 is  

an informal class system that relies on naming conventions rather than formal definitions. 

 

Defining S3 Classes: 

An S3 object is typically created by assigning a class attribute to a list or vector.  

For example:     

person <- list(name="John", age=25)   

 class(person) <- "Person" 

 

In this example, an object “person” is given a class called “Person”. Methods can then be  

defined to behave differently for objects of class “Person”. 

 

Creating Methods for S3: 

S3 methods are functions that end with the class name.  

For example, to define a print method for the “Person” class: 

    print.Person <- function(x) { 

        cat("Name:", x$name, " 

Age:", x$age, " 

") 

    } 

 

When print(person) is called, R automatically looks for a function named print.Person(). 

 

Advantages of S3 Classes: 

- Simple and easy to use. 

- Flexible: no need for formal definitions. 

- Works well for small projects or prototypes. 

 

Limitations: 

- No strict structure enforcement. 

- Errors can occur if conventions are not followed. 
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S4 CLASSES 

 

S4 classes were introduced to add more formalism and reliability to object-oriented  

programming in R. Unlike S3, S4 classes require explicit class and method definitions. 

 

Defining S4 Classes: 

S4 classes are created using setClass(): 

    setClass("Person", slots = list(name="character", age="numeric")) 

 

 

Creating Objects: 

    p1 <- new("Person", name="John", age=25) 

 

Accessing Slots: 

Slots in an S4 object can be accessed using the @ operator: 

    p1@name 

 

Defining Methods for S4: 

Methods are defined using setMethod(): 

    setMethod("show", "Person", function(object) { 

        cat("Name:", object@name, " 

Age:", object@age, " 

") 

    }) 

 

Advantages of S4 Classes: 

- Enforces structure and type safety. 

- Methods are clearly defined. 

- Suitable for large and complex applications. 

 

Limitations: 

- More verbose and complex than S3. 

 

 

MANAGING OBJECTS 

Objects are central to R programming. They store data and functions. The environment  

stores all objects currently in use. 

 

Key Functions: 

- ls(): Lists all objects in the current environment. 

- rm(): Removes objects. 

- exists(): Checks if an object exists. 

- assign(): Assigns values to variable names dynamically. 

- get(): Retrieves objects by name. 

 

Example: 

    x <- 10 
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    assign("y", 20) 

    ls() 

    rm(x) 

 

INPUT AND OUTPUT 

Input and output operations are essential for interacting with users and external data.  

 

Reading Input from Keyboard: 

The readline() function allows user input: 

    name <- readline(prompt="Enter your name: ") 

 

Writing Output to Monitor: 

The cat() and print() functions display information on screen: 

    cat("Welcome", name) 

 

READING AND WRITING FILES 

R provides functions to read and write data from text, CSV, and other files. 

 

Common Functions: 

- read.table(), read.csv() – for reading data. 

- write.table(), write.csv() – for writing data. 

 

Example: 

    data <- read.csv("data.csv") 

    write.csv(data, "output.csv") 

 

 

ACCESSING THE INTERNET 

R can interact with web resources using packages like httr or RCurl. 

 

Example: 

   library(httr) 

   response <- GET("https://example.com") 

    content <- content(response, "text") 

 

STRING MANIPULATION 

Strings are sequences of characters used for text data. 

 

Common Functions: 

- nchar(): Number of characters. 

- substr(): Extract part of a string. 

- paste(): Combine strings. 

- strsplit(): Split strings. 

 

Example: 

    s <- "Data Science with R" 

    substr(s, 1, 4) 

 

GRAPHICS IN R 
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R is known for its powerful graphical capabilities. The base graphics system allows  

creating a variety of plots. 

 

Creating Graphs: 

    x <- 1:10 

    y <- x^2 

    plot(x, y, main="Simple Plot", xlab="X", ylab="Y") 

 

CUSTOMIZING GRAPHS 

Customization allows better visualization of data. 

 

Options include: 

- main: Title of the graph. 

- xlab, ylab: Axis labels. 

- col: Color of points or lines. 

- type: Type of plot (p for points, l for lines). 

 

Example: 

    plot(x, y, type="b", col="blue", main="Customized Plot") 

 

SAVING GRAPHS TO FILES 

Graphs can be saved to various file formats. 

 

Example: 

 png("graph.png") 

 plot(x, y)   

dev.off() 

 

Other formats include pdf(), jpeg(), and tiff(). 

 

CREATING THREE-DIMENSIONAL PLOTS 

3D plots help visualize multivariate data. Packages like plotly or rgl are used. 

 

Example using plotly: 

    library(plotly) 

    plot_ly(x=~x, y=~y, z=~(x+y), type="scatter3d", mode="markers") 

 

3D plots provide interactive visualization that enhances data understanding. 

 

CONCLUSION 

This unit explained how R handles object-oriented programming with S3 and S4 classes,  

along with object management, input/output operations, file handling, internet access,  

string manipulation, and graphics. Mastering these concepts helps in developing structured,  

interactive, and visually appealing R programs. 

 

UNIT V: Modelling in R 

Interfacing R to other languages – Parallel R – Basic Statistics – Linear Model – Generalized 

Linear models – Non-linear Models – Time Series and Auto-Correlation – Clustering. 
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This unit focuses on different modeling techniques in R. It explores how R connects  

to other languages, performs parallel computation, and applies statistical and  

predictive models such as linear, generalized linear, and non-linear models.  

Additionally, it explains time series analysis, auto-correlation, and clustering methods. 

 

INTERFACING R TO OTHER LANGUAGES 

R is highly flexible and can interface with other programming languages such as C,  

C++, Java, and Python. This feature allows R programmers to extend its capabilities  

and improve performance when handling complex or time-consuming computations. 

 

Interfacing with C/C++: 

R provides .C() and .Call() functions to call C routines from R code. This enables  

developers to write performance-intensive tasks in C/C++ and integrate them with R. 

 

 

Example: 

    result <- .C("myCFunction", as.integer(x), as.double(y)) 

 

Rcpp package simplifies this process by allowing C++ functions to be written and called  

directly in R without complex syntax. 

 

Interfacing with Python: 

The reticulate package provides a bridge between R and Python. It allows R users  

to import Python modules, run Python scripts, and exchange data between the two languages. 

 

Example: 

    library(reticulate) 

    py_run_string("print('Hello from Python!')") 

 

Advantages: 

- Reuse existing code written in other languages 

 

 

- Improve performance for computationally heavy tasks. 

- Integrate different programming environments. 

 

PARALLEL R 

Parallel computing allows R to execute multiple operations simultaneously, reducing  

execution time for large datasets or intensive computations. 

 

Base R provides parallel capabilities through the 'parallel' package. It includes  

functions such as mclapply(), parLapply(), and clusterApply(). 

 

Example: 

    library(parallel) 

    cl <- makeCluster(4) 

    parLapply(cl, 1:10, function(x) x^2) 
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    stopCluster(cl) 

 

The foreach and doParallel packages also support parallel loops, allowing tasks to  

run concurrently on multiple cores or machines. 

 

Benefits of Parallel R: 

- Improved computational efficiency. 

- Handles large-scale data analysis. 

- Utilizes multi-core processors effectively. 

 

BASIC STATISTICS IN R 

R is primarily a statistical computing environment. It offers tools for descriptive  

and inferential statistics, hypothesis testing, and data summarization. 

 

Common Statistical Functions: 

- mean(), median(), mode() – measures of central tendency. 

- var(), sd(), range() – measures of dispersion. 

- cor(), cov() – relationships between variables. 

 

Example: 

    x <- c(5, 10, 15, 20) 

    mean(x) 

    sd(x) 

    cor(x, x^2) 

 

Hypothesis Testing: 

R supports various statistical tests such as t-test, chi-square test, and ANOVA. 

 

Example: 

    t.test(x, y) 

    chisq.test(table(data$group, data$outcome)) 

 

LINEAR MODEL 

A linear model describes a relationship between a dependent variable and one or  

moreindependent variables using a straight-line equation. 

The lm() function in R is used to fit linear models. 

 

Example: 

    model <- lm(y ~ x1 + x2, data=dataframe) 

    summary(model) 

 

Interpretation: 

- Coefficients represent the effect of predictors. 

- The R-squared value indicates model fit. 

- Residuals show differences between observed and predicted values. 

 

Advantages: 

- Simple and interpretable. 

- Useful for prediction and trend analysis. 
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GENERALIZED LINEAR MODELS (GLM) 

GLMs extend linear models by allowing response variables to have error distributions  

other than normal. Common GLMs include logistic regression and Poisson regression. 

 

Example of Logistic Regression: 

    glm_model <- glm(y ~ x1 + x2, family=binomial, data=dataframe) 

    summary(glm_model) 

 

Example of Poisson Regression: 

    glm_poisson <- glm(count ~ x1 + x2, family=poisson, data=dataframe) 

 

Components of GLM: 

- Random component: Specifies the probability distribution. 

- Systematic component: Defines predictors. 

- Link function: Connects the linear predictor and mean of the distribution. 

 

Advantages: 

- Handles binary, count, and non-normal data. 

- Flexible and widely applicable in real-world modeling. 

 

NON-LINEAR MODELS 

Non-linear models are used when the relationship between variables cannot be  

represented by a straight line. R provides the nls() function for fitting  

non-linear models. 

 

Example: 

    model <- nls(y ~ a * exp(b * x), data=dataframe, start=list(a=1, b=0.1)) 

 

Features: 

- Captures complex relationships. 

- Useful in growth curves, enzyme kinetics, and population studies. 

 

Challenges: 

- Requires good starting values. 

- Can converge slowly or fail with poor initialization. 

 

TIME SERIES AND AUTO-CORRELATION 

A time series is a sequence of data points recorded at successive time intervals.  

R provides powerful tools for analyzing and forecasting time series data. 

 

Creating a Time Series Object: 

    ts_data <- ts(data, start=c(2020,1), frequency=12) 

 

Plotting and Analyzing: 

    plot(ts_data) 

 



 
107 

Ms.M.BALAMONICA M.Sc 
ASSISTANT PROFESSOR 
 
 

Decomposition: 

Time series can be decomposed into trend, seasonal, and irregular components using  

the decompose() function. 

 

Auto-correlation: 

Auto-correlation measures how observations relate to past values in the series. 

 

Example: 

    acf(ts_data) 

    pacf(ts_data) 

 

Forecasting Models: 

- ARIMA (Auto-Regressive Integrated Moving Average) 

- Exponential Smoothing 

 

Example: 

    library(forecast) 

    fit <- auto.arima(ts_data) 

    forecast(fit, h=12) 

 

Advantages of Time Series Modeling: 

- Identifies trends and seasonal patterns. 

- Useful for forecasting and prediction. 

 

CLUSTERING 

Clustering is an unsupervised learning technique that groups similar observations  

based on their characteristics. It helps identify natural groupings in data. 

 

Common Clustering Methods: 

1. K-Means Clustering   

2. Hierarchical Clustering   

3. DBSCAN (Density-Based Clustering) 

 

Example (K-Means): 

    set.seed(123) 

    data <- matrix(rnorm(100), ncol=2) 

    kmeans_result <- kmeans(data, centers=3) 

    plot(data, col=kmeans_result$cluster) 

 

Hierarchical Clustering: 

    dist_matrix <- dist(data) 

    hc <- hclust(dist_matrix, method="complete") 

    plot(hc) 

 

Evaluation of Clustering: 

- Within-cluster sum of squares (WSS) 

- Silhouette score 

Applications: 

- Market segmentation 

- Image recognition 
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- Bioinformatics 

 

CONCLUSION 

 

Modeling in R is a cornerstone of data analysis and predictive analytics. From  

statistical summaries to complex machine learning models, R provides a wide range  

of tools for modeling, forecasting, and pattern recognition. Understanding how to  

interface R with other languages, use parallel computation, and apply linear,  

generalized, and non-linear models allows analysts to build efficient and scalable  

data-driven solutions. Time series analysis and clustering further enhance the  

ability to understand data trends and relationships effectively. 

 

 

 

 

 

 

 

 

 


